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Thresholding a Sum 
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Short-Circuiting 

Optimization (Bentley rule) 
Quit early if the partial product ever exceeds the 
threshold. 
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Thresholding a Sum in Parallel 
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Question 
How can we parallelize a short-circuited loop? 
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Divide-and-Conquer Loop 
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How might we quit early and save work if 
the partial sum exceeds the threshold? 
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Short-Circuiting in Parallel 
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Short-Circuiting in Parallel 
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Notes: 
! Beware: nondeterministic code! 
! The benign race on 54-6(,$35*

can cause true-sharing contention 
if you are not careful. 

!Don’t forget to reset 54-6(,$35*
after use! 

! Is a memory fence necessary? No! 
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Speculative Parallelism 

Definition. Speculative parallelism occurs when 
a program spawns some parallel work that might 
not be performed in a serial execution. 

RULE OF THUMB: Don’t spawn speculative work 
unless there is little other opportunity for 
parallelism and there is a good chance it will be 
needed. 
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Review: Alpha-Beta Analysis 

Theorem [KM75]. For a game tree with branching 
factor b and depth d, an alpha-beta search with moves 

b#d/2$
searched in best-first order examines exactly b!d/2" + 

- 1 nodes at ply d.  %
The naive algorithm examines bd nodes at ply d.  

effectively doubled. search depth is the work, 

best-first order examines exactly 
nodes at ply 

The naive algorithm examines nodes at ply 
effectively doubled. search depth is the work, 

best examines exactly 
nodes at ply 

The naive algorithm examines nodes at ply 
effectively doubled. search depth is the work, the same 

Key optimization 
Prune the game tree. For 

For the same depth, the work is square-rooted. 
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Parallel Alpha-Beta 
First child Last child 

Observation: In a best-ordered tree, the degree of 
every node is either 1 or maximal. 

IDEA [FMM91]: If the first child fails to generate a beta 
cutoff, speculate that the remaining children can be 
searched in parallel without wasting work: “Young 
Siblings Wait.” Abort subcomputations that prove to 
be unnecessary. 
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Abort Mechanism 
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IDEA: Poll up the search tree to see whether any 
internal node desires an abort. 
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Problem with Young Siblings Wait 

First child Last child 

Problem: In general, the game tree is not best-
ordered, meaning that parallel alpha-beta search 
using the “young siblings wait” idea will waste work. 
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Alpha-Beta Search: Example 

! $ #

! " #

0 0 0 8 1 1 1 0 7 0 0 7 7 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 0 0 
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Alpha-Beta Search: Example 

! " #

0 0 0 8 1 1 1 0 7 0 0 7 7 0 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 0 0 
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Alpha-Beta Search: Example 

! " # ! $ &

0 0 0 8 1 1 1 0 7 0 0 7 7 0 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 0 0 
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Alpha-Beta Search: Example 
! " #

! $ # ! " &

0 0 0 8 1 1 1 0 7 0 0 7 7 0 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 0 0 
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Alpha-Beta Search: Example 

! $ # ! " & ! $ &

0 0 0 8 1 1 1 0 7 0 0 7 7 0 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 0 0 
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Alpha-Beta Search: Example 

! $ # ! " & ! $ &

0 0 0 8 1 1 1 0 7 0 0 7 7 0 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 0 0 
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! " &

Alpha-Beta Search: Example 

! ' # ! " % ! ' % ! ' &

0 0 0 8 1 1 1 0 7 7 7 0 0 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 0 0 
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! " &

Alpha-Beta Search: Example 

! $ )

! ' # ! " % ! ' % ! ' & ! ' )

0 0 0 8 1 1 1 0 7 7 7 0 0 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 0 0 
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Alpha-Beta Search: Example 

! ) (

! $ % ! " ' ! $ ' ! $ # ! $ (

0 0 0 8 1 1 1 0 7 0 0 7 7 0 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 

Second sibling
provides cutoff. 

0 
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Young Siblings Wait: Example 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 

P P 

! " #

! $ #

Parallel recursive full-
window searches. 
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Young Siblings Wait: Example 
! $ #

! " # ! $ &

0 0 0 8 1 1 1 0 7 0 0 7 7 0 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 0 0 
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Young Siblings Wait: Example 

P 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 
!! !!

P 

! " #

! " #

! $ % ! $ &

! $ #

Parallel recursive full-
window searches. 
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Young Siblings Wait: Example 
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0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 
!! !!

! " #

! " #

! $ % ! $ &

! $ #

! " '

! ( '

P P 

Parallel recursive full-
window searches. 

! " &

! ( &

2018 by the Lecturers of MIT 6.172

Cutoff from 
second child is not 
available to prune 
these searches. 
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Getting More Aborts 

P P 

! " #

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 
!! !!

! " $

! % #

! % #

! " & ! " ' ! % '

! % $

! " ' ! % $

!!

! % ( 

! ) ( 

!"#$% "%&' 

Abort! 

IDEA: Allow children to update parent’s alpha/beta 
value concurrently. 
! Children can poll for the alpha/beta value.
! Problem: Difficult to implement efficiently.
! Problem: Efficiency relies on lucky scheduling!
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Wasted Work in Parallel Alpha-Beta 

In practice, speculative alpha-beta search of a game tree 
will always waste some work. 

Aim to balance two conflicting goals: 
! Generate enough parallel work to get parallel speedup.
! Don’t do too much unnecessary work.
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Jamboree Search 

First child Last child 

IDEA [K94]: After searching the first child, perform a 
scout search of the remaining children in parallel, and 
sequentially value any tests that fail. 
! In other words, do searchPV serially, and do

scout-search in parallel.
Intuition: It’s fine to waste work on a zero-window 
search, but not on a full-window search. 

© 2012–2018 by the Lecturers of MIT 6.172 31



 

 
 

Jamboree Search: Example 

P P 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 

! % #

! & #

Recursive zero-
window search 

for ! " #$
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Jamboree Search: Example 

! " # ! % #

0 0 0 8 1 1 1 0 7 0 0 7 7 0 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 0 0 
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Jamboree Search: Example 

P P 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 

! " #

! $ #

! % # ! % #

!! !!

! % #

Recursive zero-
window search 

for ! % #&
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Jamboree Search: Example 

P P 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 

! " #

! $ #

! % # ! % #

!! !!

! % #

! ' # ! ' #

!!!!

P P 

Recursive zero- Recursive zero-
window search window search 

for ! % #& for ! % #&
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Jamboree Search: Example 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 

! " #

! $ #

! % #

!! !!

! % #

! & # ! & #

!!!!

! & # ! & # ! $ # ! $ #

!! !!

! $ #! & #

Test failed.  Wait for 
preceding children to 

finish, then recursively 
value this tree. 

!!
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Jamboree Search: Example 

P 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 

! " #

! $ #

! % # ! % #

!! !!

! % #

! & #

!!

! $ #

! $ #! & #
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Jamboree Search: Example 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 

! " #

! $ #

! % # ! % #

!! !!

! % #

! " & ! ' #

!!

! $ #

! $ ## ( ! $ & 
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Jamboree Search: Example 

P P 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 

! " #

! $ #

! % # ! % #

!! !!

! % #

! " & ! ' #

!!

! $ #

! $ ## ( ! $ & 

 

 
 

Recursive zero-
window search 

for ! % &)
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Jamboree Search: Example 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 

! " #

! $ #

! % # ! % #

!! !!

! % #

! " & ! ' #

!!

! $ & ! $ #

! $ ## ( ! $ & 

P 

Recursive zero-
window search 

for ! % &)

Recursive zero
window search 
Recursive zero
window search 

Test failed.  Wait for 
preceding children to 

finish, then recursively 
value this tree. 

00 
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Jamboree Search: Example 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 

! " #

! $ #

! % # ! % #

!! !!

! % #

! " & ! ' #

!!

! ' & ! $ #

! $ ## ( ! $ & 

P 

!!

! $ &

 

 
Recursive full-
width search. 
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Jamboree Search Pseudocode [K94]

JAMBOREE(n,!,!) 
1 if n is a leaf then return STATICEVAL(n) 

2 {c
0
,c

1
,…,c

k
} = Children(n) 

b = -JAMBOREE(c0,-!,-!) 
if b ! ! then return b 

if b > ! then ! = b 

6 parallel_for (c
i 
in {c

1
,c

2
,…,c

k
}) 

7 s = -JAMBOREE(c
i
,-!-1,-!) 

8 if s > b then b = s 

9 if s ! ! then abort-and-return s 

10 if s > ! then
11 wait for completion of all c

j 
where j < i 

12 s = -JAMBOREE(ci,-!,-!) 
13 if s ! ! then abort-and-return s 

if s > ! then ! = s 

if s > b then b = s 

return b 

Abort all 
siblings 

and return. 

Full-window 
search of 
first child. Parallel zero-

window 
searches. 

Full-window 
search on 

failure. 

Why? 
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Getting Started with Parallel Leiserchess 

The Leiserchess codebase is already structured to 
support a simple parallelization of !%&*")!(#'%+. 

!%&*")!(#'%+E%C
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8C

J

Resulting search is not 
the same as Jamboree 

search, but it’s enough to 
get you started. 
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Tips for Parallelizing Leiserchess 

∙ Simply parallelizing the loop will produce code with
races!  Consider how you can address them:
∙ Synchronize concurrent accesses, e.g., using

locks.
∙Make a thread-local copy when a computation is

stolen.
∙ Use a thread-local data structure, but don’t copy

data between threads.
∙Decide the race is benign and leave it be.

∙ Avoid generating too much wasted work.
∙Duplicate the loop over the moves in

scout_search, and make one copy parallel.
∙ Switch from the serial loop to the parallel loop

when the number of legal moves is high enough.
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Opening Book 

∙ Precompute best moves at the beginning of the
game.

∙ The [KM75] theorem implies that it is cheaper
to keep separate opening books for each side
than to keep one opening book for both.
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Iterative Deepening 

∙ Rather than searching the game tree to a given
depth d, search it successively to depths 1, 2, 3,
…, d.

∙With each search, the work grows exponentially,
and thus the total work is only a constant factor
more than searching depth d alone.

∙During the search for depth k, keep move-
ordering information to improve the effectiveness
of alpha-beta during search k+1.

∙Good mechanism for time control.

© 2012–2018 by the Lecturers of MIT 6.172 47



    

 

      
 

    
        

   
    

Endgame Database 

IDEA: If there are few enough pieces on the 
board, precompute the outcomes and store 
them in a database. 
● It doesn’t suffice to store just win, loss, or

draw for a position.
● Keep the distance to mate to avoid cycling.
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Quiescence Search 

∙ Evaluating at a fixed depth can leave a board
position in the middle of a capture exchange.

∙ At a “leaf” node, continue the search using only
captures — quiet the position.

∙ Each side has the option of “standing pat.”
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Null-Move Pruning 

∙ In most positions, there is always something
better to do than nothing.

∙ Forfeit the current player’s move (illegal in
chess), and search to a shallower depth.

∙ If a beta cutoff is generated, assume that a full-
depth search would have also generated the
cutoff.

∙Otherwise, perform a full-depth search of the
moves.

∙Watch out for zugzwang!
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Other Search Heuristics 

∙ Killers
• The same good move at a given depth tends to

generate cutoffs elsewhere in the tree.
∙Move extensions — grant an extra ply to the

search if
• the King is in check,
• certain captures,
• singular (forced) moves.
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Transposition Table 

∙ The search tree is actually a dag!
∙ If you’ve searched a position to a given depth

before, memoize it in a hash table (actually a
cache), and don’t search it again.

∙ Store the best move from the position to
improve alpha-beta and minimize wasted work
in parallel alpha-beta.

∙ Tradeoff between how much information to keep
per entry and the number of entries.
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Zobrist Hashing 

∙ For each square on the board and each different
state of a square, generate a random string.

∙ The hash of a board position is the XOR of the
random strings corresponding to the states of
the squares.

∙ Because XOR is its own inverse, the hash of the
position after a move can be accomplished
incrementally by a few XOR’s, rather than by
computing the entire hash function from
scratch.
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Transposition-Table Records 

● Zobrist key
● Score
● Move
● Quality (depth searched)
● Bound type (upper, lower, or exact)
● Age
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Typical Move Ordering 

1. Transposition-table move
2. Internal iterative deepening
3. Nonlosing capture in MVV-LVA (most valuable

victim, least valuable aggressor) order
4. Killers
5. Losing captures
6. History heuristic
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Late-Move Reductions (LMR) 

Observation 
With a good move ordering, a beta cutoff 
will either occur right away or not at all. 
Strategy
● Search first few moves normally.
● Reduce depth for later moves.
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Board Representation 

Bitboards 
• Use a 64-bit word to represent, for example,
where all the pawns are on the 64 squares of the
board.
• Use POPCOUNT and other bit tricks to do move
generation and to implement other chess
concepts.
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  More Good Stuff 

https://www.chessprogramming.org/ 
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