
6.172 
Performance 
Engineering 
of Software 
Systems 

!"##$*
%&'&(!

© 2012–2018 by the Lecturers of MIT 6.172 

"#)*+)$#)*+,*-./01*

LECTURE 20 
Speculative Parallelism 
& Leiserchess 
Charles E. Leiserson 

1



!"##$*
%&'&(!

© 2012–2018 by the Lecturers of MIT 6.172 

"#)*+)$#)*+,*-./01*

SPECULATIVE PARALLELISM 

2



Thresholding a Sum 

!"#$%&# '%&( '&)%*&#" %&(

+,,- )'./#01##")2'%&( 345 )%6#/( &5 '%&( -%.%(7 8
'%&( )'. 9 :;
$,< 2)%6#/( %9:; %=&; >>%7 8

)'. >9 4?%@;
A
<#('<& )'. B -%.%(;

A

© 2012–2018 by the Lecturers of MIT 6.172 3



Short-Circuiting 

Optimization (Bentley rule) 
Quit early if the partial product ever exceeds the 
threshold. 

!"#$%&# '%&( '&)%*&#" %&(

+,,- )'./#01##")2'%&( 345 )%6#/( &5 '%&( -%.%(7 8
'%&( )'. 9 :;
$,< 2)%6#/( %9:; %=&; >>%7 8

)'. >9 4?%@;
%$ 2)'. A -%.%(7 <#('<& (<'#;

B
<#('<& $C-)#;

B

© 2012–2018 by the Lecturers of MIT 6.172 4



Thresholding a Sum in Parallel 

!"#$%&# '%&( '&)%*&#" %&(

+,,- )'./#01##")2'%&( 345 )%6#/( &5 '%&( -%.%(7 8
'%&( )'.9
:;<=/:/>?@A:?>/BC4@@2)'.5 '%&(5 D79
:;<=/:/>?E;FG?>/>?@A:?>2)'.79
1%-H/$,I 2)%6#/( %JD9 %K&9 LL%7 8
>?@A:?>/M;?N2)'.7 LJ 4O%P9

Q
:;<=/:/AR>?E;FG?>/>?@A:?>2)'.79
I#('I& >?@A:?>/M;?N2)'.7 S -%.%(9

Q

Question 
How can we parallelize a short-circuited loop? 

© 2012–2018 by the Lecturers of MIT 6.172 5



Divide-and-Conquer Loop 

!"#$%&# '%&( '&)%*&#" %&(

'%&( )'+,-$.'%&( /01 )%2#,( &3 4
%$ .& 5 63 4
'%&( )6 7 8%9:,);<=& )'+,-$.01 &>?3@
'%&( )? 7 )'+,-$.0 A &>?1 & B &>?3@
8%9:,)C&8@
'%&( )'+ 7 )6 A )?@
D#('D& )'+@

E
D#('D& 0FGH@

E

I--9 )'+,#J8##").'%&( /01 )%2#,( &1 '%&( 9%+%(3 4
D#('D& )'+,-$.01 &3 5 9%+%(@

E

How might we quit early and save work if 
the partial sum exceeds the threshold? 

© 2012–2018 by the Lecturers of MIT 6.172 6



Short-Circuiting in Parallel 

!"#$%&# '%&( '&)%*&#" %&(

'%&( )'+,-$.'%&( /01 )%2#,( &1 '%&( 3%+%(1 4--3 /54-6(,$35*7 8
%$ ./54-6(,$35*7 6#('6& 9:
%$ .& ; <7 8
'%&( )< = >%3?,)@5A& )'+,-$.01 &BC1 3%+%(1 54-6(,$35*7:
'%&( )C = )'+,-$.0 D &BC1 & E &BC1 3%+%(1 54-6(,$35*7:
>%3?,)F&>:
'%&( )'+ = )< D )C:
%$ .)'+ ; 3%+%( GG H/54-6(,$35*7 /54-6(,$35* = (6'#:
6#('6& )'+:

I
6#('6& 0J9K:

I

4--3 )'+,#L>##").'%&( /01 )%2#,( &1 '%&( 3%+%(7 8
4--3 54-6(,$35* = $53)#:
6#('6& )'+,-$.01 &1 3%+%(1 G54-6(,$35*7 ; 3%+%(:

I

4--3 /54-6(,$35*
%$ ./54-6(,$35*54-6(,$35*7 6#('6&6#('6& 9:

%$ .)'+ ; 3%+%( GG H/H/54-6(,$35*7 /54-6(,$35* = (6'#:

4--3 54-6(,$35*54-6(,$35*54-6(,$35*54-6(,$35* = $53)#$53)#::

54-6(,$35*7:54-6(,$35*7:54-6(,$35*7:54-6(,$35*7:
54-6(,$35*7:54-6(,$35*7:

G54-6(,$35*54-6(,$35*

© 2012–2018 by the Lecturers of MIT 6.172 7



)C:
GG

'%&(
$53)#
&1

)C:
GG

'%&(
$53)#
&1

)C:
GG

'%&(
$53)#
&1

Short-Circuiting in Parallel 

!"#$%&# '%&( '&)%*&#" %&(

'%&( )'+,-$.'%&( /01 )%2#,( &1 '%&( 3%+%(1 4--3 /54-6(,$35*7 8
%$ ./54-6(,$35*7 6#('6& 9:
%$ .& ; <7 8
'%&( )< = >%3?,)@5A& )'+,-$.01 &BC1 3%+%(1 54-6(,$35*7:
'%&( )C = )'+,-$.0 D &BC1 & E &BC1 3%+%(1 54-6(,$35*7:
>%3?,)F&>:
'%&( )'+ = )< D
%$ .)'+ ; 3%+%(
6#('6& )'+:

I
6#('6& 0J9K:

I

4--3 )'+,#L>##").
4--3 54-6(,$35* =
6#('6& )'+,-$.01

I

Notes: 
! Beware: nondeterministic code! 
! The benign race on 54-6(,$35*

can cause true-sharing contention 
if you are not careful. 

!Don’t forget to reset 54-6(,$35*
after use! 

! Is a memory fence necessary? No! 
© 2012–2018 by the Lecturers of MIT 6.172 8



    

 

  
     

       

   
      

    

Speculative Parallelism 

Definition. Speculative parallelism occurs when 
a program spawns some parallel work that might 
not be performed in a serial execution. 

RULE OF THUMB: Don’t spawn speculative work 
unless there is little other opportunity for 
parallelism and there is a good chance it will be 
needed. 

© 2012–2018 by the Lecturers of MIT 6.172 9



!"##$*
%&'&(!

© 2012–2018 by the Lecturers of MIT 6.172 

"#)*+)$#)*+,*-./01*

PARALLEL ALPHA-BETA 
SEARCH 

10



Review: Alpha-Beta Analysis 

Theorem [KM75]. For a game tree with branching 
factor b and depth d, an alpha-beta search with moves 

b#d/2$
searched in best-first order examines exactly b!d/2" + 

- 1 nodes at ply d.  %
The naive algorithm examines bd nodes at ply d.  

effectively doubled. search depth is the work, 

best-first order examines exactly 
nodes at ply 

The naive algorithm examines nodes at ply 
effectively doubled. search depth is the work, 

best examines exactly 
nodes at ply 

The naive algorithm examines nodes at ply 
effectively doubled. search depth is the work, the same 

Key optimization 
Prune the game tree. For 

For the same depth, the work is square-rooted. 
© 2012–2018 by the Lecturers of MIT 6.172 11



Parallel Alpha-Beta 
First child Last child 

Observation: In a best-ordered tree, the degree of 
every node is either 1 or maximal. 

IDEA [FMM91]: If the first child fails to generate a beta 
cutoff, speculate that the remaining children can be 
searched in parallel without wasting work: “Young 
Siblings Wait.” Abort subcomputations that prove to 
be unnecessary. 

© 2012–2018 by the Lecturers of MIT 6.172 12



Abort Mechanism 

!"#$%$& '!()*! '$+(*,-.%$ /
'!()*! '$+(*,-.%$ 0#+($1!2
#.'3!3.14! #.'3!3.12
5..6 +5.(!4&6+72

8 '$+(*,-.%$2

IDEA: Poll up the search tree to see whether any 
internal node desires an abort. 

© 2012–2018 by the Lecturers of MIT 6.172 13



Problem with Young Siblings Wait 

First child Last child 

Problem: In general, the game tree is not best-
ordered, meaning that parallel alpha-beta search 
using the “young siblings wait” idea will waste work. 

© 2012–2018 by the Lecturers of MIT 6.172 14



Alpha-Beta Search: Example 

! $ #

! " #

0 0 0 8 1 1 1 0 7 0 0 7 7 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 0 0 

© 2012–2018 by the Lecturers of MIT 6.172 15



Alpha-Beta Search: Example 

! " #

0 0 0 8 1 1 1 0 7 0 0 7 7 0 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 0 0 

© 2012–2018 by the Lecturers of MIT 6.172 16

!

!

$ #

% &

!!



Alpha-Beta Search: Example 

! " # ! $ &

0 0 0 8 1 1 1 0 7 0 0 7 7 0 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 0 0 

© 2012–2018 by the Lecturers of MIT 6.172 17

!

!

!!

" #

$ %

!!



Alpha-Beta Search: Example 
! " #

! $ # ! " &

0 0 0 8 1 1 1 0 7 0 0 7 7 0 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 0 0 

© 2012–2018 by the Lecturers of MIT 6.172 18

!

!

!!

$ #

" %

!!



Alpha-Beta Search: Example 

! $ # ! " & ! $ &

0 0 0 8 1 1 1 0 7 0 0 7 7 0 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 0 0 

© 2012–2018 by the Lecturers of MIT 6.172 19

!

!

!!

$ #

" %

!!

!

!

" #

' &



Alpha-Beta Search: Example 

! $ # ! " & ! $ &

0 0 0 8 1 1 1 0 7 0 0 7 7 0 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 0 0 

© 2012–2018 by the Lecturers of MIT 6.172 20

!

!

!

" #

' &

" &

!

!

!!

$ #

" %

!! !!



! " &

Alpha-Beta Search: Example 

! ' # ! " % ! ' % ! ' &

0 0 0 8 1 1 1 0 7 7 7 0 0 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 0 0 

© 2012–2018 by the Lecturers of MIT 6.172 21

' &!

! " %

!

!

!!

' #

" (

!! !!



! " &

Alpha-Beta Search: Example 

! $ )

! ' # ! " % ! ' % ! ' & ! ' )

0 0 0 8 1 1 1 0 7 7 7 0 0 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 0 0 

© 2012–2018 by the Lecturers of MIT 6.172 22

! ' &

! " %

!

!

!!

' #

" (

!! !!



Alpha-Beta Search: Example 

! ) (

! $ % ! " ' ! $ ' ! $ # ! $ (

0 0 0 8 1 1 1 0 7 0 0 7 7 0 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 

Second sibling
provides cutoff. 

0 

© 2012–2018 by the Lecturers of MIT 6.172 23

!

!

!

" #

$ #

" '

!!

! !

!

!

!!

$ %

" &

!!



Young Siblings Wait: Example 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 

P P 

! " #

! $ #

Parallel recursive full-
window searches. 

© 2012–2018 by the Lecturers of MIT 6.172 24



Young Siblings Wait: Example 
! $ #

! " # ! $ &

0 0 0 8 1 1 1 0 7 0 0 7 7 0 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 0 0 

© 2012–2018 by the Lecturers of MIT 6.172 25

!

!

!!

" #

$ %

!!



Young Siblings Wait: Example 

P 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 
!! !!

P 

! " #

! " #

! $ % ! $ &

! $ #

Parallel recursive full-
window searches. 

© 2012–2018 by the Lecturers of MIT 6.172 26



 
 

Young Siblings Wait: Example 

© 2012–2018 by the Lecturers of MIT 6.172 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 
!! !!

! " #

! " #

! $ % ! $ &

! $ #

! " '

! ( '

P P 

Parallel recursive full-
window searches. 

! " &

! ( &

2018 by the Lecturers of MIT 6.172

Cutoff from 
second child is not 
available to prune 
these searches. 

27



 
 

    

 

Getting More Aborts 

P P 

! " #

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 
!! !!

! " $

! % #

! % #

! " & ! " ' ! % '

! % $

! " ' ! % $

!!

! % ( 

! ) ( 

!"#$% "%&' 

Abort! 

IDEA: Allow children to update parent’s alpha/beta 
value concurrently. 
! Children can poll for the alpha/beta value.
! Problem: Difficult to implement efficiently.
! Problem: Efficiency relies on lucky scheduling!

© 2012–2018 by the Lecturers of MIT 6.172 28



Wasted Work in Parallel Alpha-Beta 

In practice, speculative alpha-beta search of a game tree 
will always waste some work. 

Aim to balance two conflicting goals: 
! Generate enough parallel work to get parallel speedup.
! Don’t do too much unnecessary work.

© 2012–2018 by the Lecturers of MIT 6.172 29



!"##$*
%&'&(!

© 2012–2018 by the Lecturers of MIT 6.172 

"#)*+)$#)*+,*-./01*

JAMBOREE SEARCH 

30



Jamboree Search 

First child Last child 

IDEA [K94]: After searching the first child, perform a 
scout search of the remaining children in parallel, and 
sequentially value any tests that fail. 
! In other words, do searchPV serially, and do

scout-search in parallel.
Intuition: It’s fine to waste work on a zero-window 
search, but not on a full-window search. 

© 2012–2018 by the Lecturers of MIT 6.172 31



 

 
 

Jamboree Search: Example 

P P 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 

! % #

! & #

Recursive zero-
window search 

for ! " #$

© 2012–2018 by the Lecturers of MIT 6.172 32



Jamboree Search: Example 

! " # ! % #

0 0 0 8 1 1 1 0 7 0 0 7 7 0 0 0 5 5 5 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 0 0 7 1 6 2 2 3 3 3 0 6 6 6 0 0 0 0 4 4 4 0 0 0 0 0 

© 2012–2018 by the Lecturers of MIT 6.172 33

!

!

!!

$ #

% #

!!



 

 
 

Jamboree Search: Example 

P P 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 

! " #

! $ #

! % # ! % #

!! !!

! % #

Recursive zero-
window search 

for ! % #&

© 2012–2018 by the Lecturers of MIT 6.172 34



 

 
 

 
 

Jamboree Search: Example 

P P 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 

! " #

! $ #

! % # ! % #

!! !!

! % #

! ' # ! ' #

!!!!

P P 

Recursive zero- Recursive zero-
window search window search 

for ! % #& for ! % #&

© 2012–2018 by the Lecturers of MIT 6.172 35



Jamboree Search: Example 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 

! " #

! $ #

! % #

!! !!

! % #

! & # ! & #

!!!!

! & # ! & # ! $ # ! $ #

!! !!

! $ #! & #

Test failed.  Wait for 
preceding children to 

finish, then recursively 
value this tree. 

!!

 

 

 

© 2012–2018 by the Lecturers of MIT 6.172 36

! % #



Jamboree Search: Example 

P 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 

! " #

! $ #

! % # ! % #

!! !!

! % #

! & #

!!

! $ #

! $ #! & #

 

© 2012–2018 by the Lecturers of MIT 6.172 37

! $ #



Jamboree Search: Example 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 

! " #

! $ #

! % # ! % #

!! !!

! % #

! " & ! ' #

!!

! $ #

! $ ## ( ! $ & 

 

© 2012–2018 by the Lecturers of MIT 6.172 38

! $ #



Jamboree Search: Example 

P P 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 

! " #

! $ #

! % # ! % #

!! !!

! % #

! " & ! ' #

!!

! $ #

! $ ## ( ! $ & 

 

 
 

Recursive zero-
window search 

for ! % &)

© 2012–2018 by the Lecturers of MIT 6.172 39

! $ #



Jamboree Search: Example 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 

! " #

! $ #

! % # ! % #

!! !!

! % #

! " & ! ' #

!!

! $ & ! $ #

! $ ## ( ! $ & 

P 

Recursive zero-
window search 

for ! % &)

Recursive zero
window search 
Recursive zero
window search 

Test failed.  Wait for 
preceding children to 

finish, then recursively 
value this tree. 

00 

 

 
 

 

 

© 2012–2018 by the Lecturers of MIT 6.172 40

! $ #



Jamboree Search: Example 

0 8 1 0 7 0 0 5 0 0 2 0 0 2 0 0 2 007 16 3 0 6 0 0 4 0 0 

! " #

! $ #

! % # ! % #

!! !!

! % #

! " & ! ' #

!!

! ' & ! $ #

! $ ## ( ! $ & 

P 

!!

! $ &

 

 
Recursive full-
width search. 

© 2012–2018 by the Lecturers of MIT 6.172 41

! $ #



Jamboree Search Pseudocode [K94]

JAMBOREE(n,!,!) 
1 if n is a leaf then return STATICEVAL(n) 

2 {c
0
,c

1
,…,c

k
} = Children(n) 

b = -JAMBOREE(c0,-!,-!) 
if b ! ! then return b 

if b > ! then ! = b 

6 parallel_for (c
i 
in {c

1
,c

2
,…,c

k
}) 

7 s = -JAMBOREE(c
i
,-!-1,-!) 

8 if s > b then b = s 

9 if s ! ! then abort-and-return s 

10 if s > ! then
11 wait for completion of all c

j 
where j < i 

12 s = -JAMBOREE(ci,-!,-!) 
13 if s ! ! then abort-and-return s 

if s > ! then ! = s 

if s > b then b = s 

return b 

Abort all 
siblings 

and return. 

Full-window 
search of 
first child. Parallel zero-

window 
searches. 

Full-window 
search on 

failure. 

Why? 

© 2012–2018 by the Lecturers of MIT 6.172 42



Getting Started with Parallel Leiserchess 

The Leiserchess codebase is already structured to 
support a simple parallelization of !%&*")!(#'%+. 

!%&*")!(#'%+E%C

© 2012–2018 by the Lecturers of MIT 6.172 

!"#"$%C!%&'()"C!%&*")!(#'%+,!(#'%+-&.(/C0&.(1C$0"C.(2"+1C
*$0"34)"/C0&.()%&*0")!('$#56C7C

8C
%$5K)9&'C,$0"C:;)$0.(<C=C>?C:;)$0.(<C@C0*:)&9):&;(!?C

:;)$0.(<AA6C7C
BBCD("C"+(C0(<"C:&;(C9'&:C"+(C:&;(C5$!"EC
$0"C5&%#5)$0.(<C=C0*:F(')&9):&;(!)(;#5*#"(.AA?C
:&;()"C:;C=CG("):&;(,:&;()5$!"H5&%#5)$0.(<I6?C
8C

JC
8C

J

Resulting search is not 
the same as Jamboree 

search, but it’s enough to 
get you started. 

43



    

   

       

   

     

  
  

  
     

  

        

Tips for Parallelizing Leiserchess 

∙ Simply parallelizing the loop will produce code with
races!  Consider how you can address them:
∙ Synchronize concurrent accesses, e.g., using

locks.
∙Make a thread-local copy when a computation is

stolen.
∙ Use a thread-local data structure, but don’t copy

data between threads.
∙Decide the race is benign and leave it be.

∙ Avoid generating too much wasted work.
∙Duplicate the loop over the moves in

scout_search, and make one copy parallel.
∙ Switch from the serial loop to the parallel loop

when the number of legal moves is high enough.

© 2012–2018 by the Lecturers of MIT 6.172 44



!"##$*
%&'&(!

© 2012–2018 by the Lecturers of MIT 6.172 

"#)*+)$#)*+,*-./01*

COMPUTER-CHESS 
PROGRAMS 

45



    

   

     
     

      

Opening Book 

∙ Precompute best moves at the beginning of the
game.

∙ The [KM75] theorem implies that it is cheaper
to keep separate opening books for each side
than to keep one opening book for both.

© 2012–2018 by the Lecturers of MIT 6.172 46



    

        
    

 
   

     
    

    
 

   
   

Iterative Deepening 

∙ Rather than searching the game tree to a given
depth d, search it successively to depths 1, 2, 3,
…, d.

∙With each search, the work grows exponentially,
and thus the total work is only a constant factor
more than searching depth d alone.

∙During the search for depth k, keep move-
ordering information to improve the effectiveness
of alpha-beta during search k+1.

∙Good mechanism for time control.

© 2012–2018 by the Lecturers of MIT 6.172 47



    

 

      
 

    
        

   
    

Endgame Database 

IDEA: If there are few enough pieces on the 
board, precompute the outcomes and store 
them in a database. 
● It doesn’t suffice to store just win, loss, or

draw for a position.
● Keep the distance to mate to avoid cycling.

© 2012–2018 by the Lecturers of MIT 6.172 48



    

 

      
       

        
 

       

Quiescence Search 

∙ Evaluating at a fixed depth can leave a board
position in the middle of a capture exchange.

∙ At a “leaf” node, continue the search using only
captures — quiet the position.

∙ Each side has the option of “standing pat.”

© 2012–2018 by the Lecturers of MIT 6.172 49



    

 

     
    
   
     

         
    

     

  

Null-Move Pruning 

∙ In most positions, there is always something
better to do than nothing.

∙ Forfeit the current player’s move (illegal in
chess), and search to a shallower depth.

∙ If a beta cutoff is generated, assume that a full-
depth search would have also generated the
cutoff.

∙Otherwise, perform a full-depth search of the
moves.

∙Watch out for zugzwang!

© 2012–2018 by the Lecturers of MIT 6.172 50



    

 

         
 

      
 

  

  

Other Search Heuristics 

∙ Killers
• The same good move at a given depth tends to

generate cutoffs elsewhere in the tree.
∙Move extensions — grant an extra ply to the

search if
• the King is in check,
• certain captures,
• singular (forced) moves.

© 2012–2018 by the Lecturers of MIT 6.172 51



    

 

      
      

       
    

       
   

 
      

     

Transposition Table 

∙ The search tree is actually a dag!
∙ If you’ve searched a position to a given depth

before, memoize it in a hash table (actually a
cache), and don’t search it again.

∙ Store the best move from the position to
improve alpha-beta and minimize wasted work
in parallel alpha-beta.

∙ Tradeoff between how much information to keep
per entry and the number of entries.

© 2012–2018 by the Lecturers of MIT 6.172 52



    

      
   

         
      

        
      

    
   

Zobrist Hashing 

∙ For each square on the board and each different
state of a square, generate a random string.

∙ The hash of a board position is the XOR of the
random strings corresponding to the states of
the squares.

∙ Because XOR is its own inverse, the hash of the
position after a move can be accomplished
incrementally by a few XOR’s, rather than by
computing the entire hash function from
scratch.

© 2012–2018 by the Lecturers of MIT 6.172 53



    

 

  
     

Transposition-Table Records 

● Zobrist key
● Score
● Move
● Quality (depth searched)
● Bound type (upper, lower, or exact)
● Age

© 2012–2018 by the Lecturers of MIT 6.172 54



    

  

  
   

   

 
 

Typical Move Ordering 

1. Transposition-table move
2. Internal iterative deepening
3. Nonlosing capture in MVV-LVA (most valuable

victim, least valuable aggressor) order
4. Killers
5. Losing captures
6. History heuristic

© 2012–2018 by the Lecturers of MIT 6.172 55



    

       
        

    
    

Late-Move Reductions (LMR) 

Observation 
With a good move ordering, a beta cutoff 
will either occur right away or not at all. 
Strategy
● Search first few moves normally.
● Reduce depth for later moves.

© 2012–2018 by the Lecturers of MIT 6.172 56



    

    
        

      
     

Board Representation 

Bitboards 
• Use a 64-bit word to represent, for example,
where all the pawns are on the 64 squares of the
board.
• Use POPCOUNT and other bit tricks to do move
generation and to implement other chess
concepts.

© 2012–2018 by the Lecturers of MIT 6.172 57



    

  More Good Stuff 

https://www.chessprogramming.org/ 

© 2012–2018 by the Lecturers of MIT 6.172 58



 

 

MIT OpenCourseWare 
https://ocw.mit.edu 

6.172 Performance Engineering of Software Systems 
Fall 2018 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

59




