

6.172
Performance
Engineering
of Software
Systems

!"##$
%&'&(!

"#)*+)$#)*+,*-./01

© 2008–2018 by the MIT 6.172 Lecturers

LECTURE 19
Leiserchess Codewalk
Helen Xu
November 15, 2018

1

!"##$
%&'&(!

"#)*+)$#)*+,*-./01

© 2008–2018 by the MIT 6.172 Lecturers

GAME RULES

2

Leiserchess Board Game

Two players: Tangerine & Lavender

Each player has 7 Pawns and 1 King

4 Orientations Pawn

King

© 2008–2018 by the MIT 6.172 Lecturers 3

General Gameplay

• Tangerine moves first, then play alternates
between the two players.

• All pieces move the same (King or Pawn)
• Each turn has two parts: moving and firing

the laser.
• The laser reflects off the long edge of the

pawns and kills a pawn if it hits the other
sides.

• One side wins when its King shoots the
other King with its laser.

© 2008–2018 by the MIT 6.172 Lecturers 4

How to Move

• At the beginning of each turn, the player
on move chooses a piece to move.

• There are two types of moves: basic and
swap.

© 2008–2018 by the MIT 6.172 Lecturers 5

Basic Moves

! On a basic move, a
piece can either:
! rotate 90, 180, or

270 degrees
! move to an empty

adjacent square in
any of the eight
compass directions
while maintaining
orientation.

! A piece cannot both
rotate and move.

© 2008–2018 by the MIT 6.172 Lecturers 6

Swap Moves

If an enemy piece occupies an adjacent square
to the player’s piece, the two pieces swap
squares (maintaining their orientation) and the
player’s piece must make an extra basic move.

© 2008–2018 by the MIT 6.172 Lecturers 7

Ko Rule

! A Ko rule (familiar from the game of Go)
helps to ensure that the game makes
progress.

! A move is illegal if it “undoes” the
opponent’s most recent move by returning
to the position immediately prior to the
current position.

Tangerine performs a swap move. Lavender performs a swap move
to undo Tangerine’s move.

© 2008–2018 by the MIT 6.172 Lecturers 8

Draws

• A draw occurs if:
• There have been 50 moves by each side

without a Pawn being zapped,
• The same position repeats itself with the

same side on move, or
• The two players agree to a draw.

© 2008–2018 by the MIT 6.172 Lecturers 9

We shall use Fischer time control,

When it’s your move, your clock counts down.

Time Control

! A chess clock limits the amount of time
players have to make a move.

! When it’s your move, your clock counts down.
! When it’s your opponent’s move,

your clock stops.
! We shall use Fischer time control,

which specifies an initial time
budget and a time increment. Bobby Fischer

! The notation !"# $% %&' means each player is
allocated a time budget of 60 seconds to
begin, and 0.5 seconds is added to the
budget each time the player makes a move.

())*#+,,-.&/"0"*-1"2&345,/"0",6"7-893.)43:
10 © 2008–2018 by the MIT 6.172 Lecturers Image is in the public domain via the Dutch National Archives.

http://www.gahetna.nl/collectie/afbeeldingen/fotocollectie/zoeken/weergave/detail/q/id/abdf9680-d0b4-102d-bcf8-003048976d84
https://en.wikipedia.org/wiki/time_control

Leiserchess Tactics

! For a King to zap the enemy King, it risks
opening itself up to counterattack.

! For example, how can Tangerine zap the
Lavender Pawn on !"?

!

"

$

%

&

'

(

) * + , - . / 0
© 2008–2018 by the MIT 6.172 Lecturers 11

Leiserchess Tactics

Tangerine can zap Lavender’s pawn on !" by
moving its pawn on #$ to #%. Now, how can
Lavender counter?

!

"

$

%

&

'

(

) * + , - . / 0
© 2008–2018 by the MIT 6.172 Lecturers 12

Leiserchess Tactics

Lavender can counter by moving its pawn on !"
to #$, zapping the Tangerine King and winning
the game.

!

"

$

%

&

'

(

) * + , - . / 0

© 2008–2018 by the MIT 6.172 Lecturers 13

Forsyth-Edwards Notation (FEN)
FEN describes a chess position using

David a character string (see #9.3*+&:*1()).
Forsyth

14
This image is in the public domain.

Example (opening position):
$$;&<1'$*<&=1'$*>&?1'$*<8@?&?$*<8@A5?&>8@A5=&<8@A5<&;88B@

!""#$%&&'''()!*$$#+,-+.//01-(,+-&2,+$3"!456'.+6$78,"."0,1
© 2008–2018 by the MIT 6.172 Lecturers

https://www.chessprogramming.org/Forsyth-Edwards_Notation

Forsyth-Edwards Notation (FEN)
FEN describes a chess position using

David a character string (see #9.3*+&:*1()).
Forsyth

$$;&<1'$*<&=1'$*>&?1'$*<8@?&?$*<8@A5?&>8@A5=&<8@A5<&;88B@

Example (opening position):

Slashes separate rows
! 1 space
! Lavender Pawn facing SE
! 3 spaces
! Tangerine Pawn facing NW
! Tangerine Pawn facing SE
! 1 space

!""#$%&&'''()!*$$#+,-+.//01-(,+-&2,+$3"!456'.+6$78,"."0,1
© 2008–2018 by the MIT 6.172 Lecturers 15

This image is in the public domain.

https://www.chessprogramming.org/Forsyth-Edwards_Notation

Forsyth-Edwards Notation (FEN)
FEN describes a chess position using

David a character string (see #9.3*+&:*1()).
Forsyth

Example (opening position):

Player to move.
! @ = Tangerine
! C = Lavender

$$;&<1'$*<&=1'$*>&?1'$*<8@?&?$*<8@A5?&>8@A5=&<8@A5<&;88B@

© 2008–2018 by the MIT 6.172 Lecturers 16
This image is in the public domain.

!""#$%&&'''()!*$$#+,-+.//01-(,+-&2,+$3"!456'.+6$78,"."0,1

https://www.chessprogramming.org/Forsyth-Edwards_Notation

+3" '!'3###-%4+
+!" 0&$(0(#-+4*

! +&" '&'(###4+4*
+(" 6!-!###4!,
+)" -!/####13/#
+
+
2" '3,####4!-*
5" -!-*4!#-!6!
%3" 4!-*###6!-*6+
%!" '(7####6+/#
%*" '(1&###6)/
%+" 0&'(###4*7
%%" 6!-!###4)7
%&" '303###4*1*
%(" -!4!###4)-)
%)" 1&,####1*'+#
%2" 03$!###'+0+
%5" $!.!###0+$+
&3" '(0&###$+.+
38!

*&" -& Swap move with

5" 0+'%###1),#translation
2" Basi$*$+###0+$+$*#c move with

*(" -%-& translation 6(#1)')0(#
$&0('),

6%###-%6%-&

*3" '%1+4%#6)-)
*!" Bas4%-&###'%1&1(#ic move
**" wi.%$&###$*0+#th rotation
+" '%0+'#'%0+
*%" '*0+$+#-)6)#

!=*8!=* Draw +%"#1343/##6!-*4!

83 Tangerine wi+*"#0(0&###4*1!43ns !&" '!13###'%1+!
!(" -&4%###1&4%4+#38!
!)" 1&/####'*0+#

+!" 0&$(0(#-+4*

*%" '*0+$+#-)6)#
*&" -&6%###-%6%-&
*(" -%-&6(#1)')0(#
*)" $&0('),

%!" '(7####6+/#
%*" '(1&###6)/
%+" 0&'(###4*7
%%" 6!-!###4)7

!2" $*$+###0+$+$*#
!5" 0+'%###1),#
*3" '%1+4%#6)-)

+&" '&'(###4+4*
+(" 6!-!###4!,
+)" -!/####13/#

*!" 4%-&###'%1&1(#

+" '%0+'#'%0+

Algebraic Notation for Games

!
!" $%$&###'(')
*" $&$%###')'(
+" $%,####-+,#
%" $%.&###-%/
&" 0+'%###1&'%0&
(" 0*'+###0&$&
)" .&$(###$&.%
2" .3$3###4%/
5" '+'%###-+-*
!3" $303###1(1)
!!" 1&4&-&#.%$+0*
!*" '*0*$*#4%-+
!+" '%1&/##1),
!%" 1&'(')#-*-!

*)"
*2" $($&0(1),#
*5" 03'!###1)4)#

*)" $&0('),

+3" '!'3###-%4+

Swap move
with rotation

.99:;<=='>"?@A@:'1@6"BC$=?@A@=DE$'-C6@4F>B969@B>FG4.';;H

© 2008–2018 by the MIT 6.172 Lecturers 17

Basic move with
translation

Basic move
with rotation

Swap move with
translation

1-0 Tangerine wins
0-1 Lavender wins

1/2-2/1 Draw

https://en.wikipedia.org/wiki/Algebraic_notation_(chess)

!"##$
%&'&(!

"#)*+)$#)*+,*-./01

© 2008–2018 by the MIT 6.172 Lecturers

PROJECT ORGANIZATION

18

README

Directories under project4:
doc: Leiserchess rules and documentation for the

game-engine interface.

autotester: Java local autotester

BayesElo: parses Elo results from autotester.

pgnstats: parses statistics from autotester results.

tests: test specifications for the local autotester.

player: code for your Leiserchess bot. You will be
optimizing the code in here!

webgui: local webgui where you can watch the game
and play it.

© 2008–2018 by the MIT 6.172 Lecturers 19

Java Autotester

The Java local autotester is in autotester/
under the code distribution.
You can test changes to your bot using time
trials over many games.
The tests/ directory holds configuration files
for your autotests:
• number of games,
• bots in your trials,
• time control,
• etc.

© 2008–2018 by the MIT 6.172 Lecturers 20

Java Autotester Configuration

!"#$ %&'(
)**+&%&,,-./$.$-)**+,0.1
213/45*#60$ %&788
.9.:/&%&)1$9!

;&6*<&</&=1>/&.=/&":1?/5&0/@969.9*6$
;&AA

":1?/5&%&5/@/5/6!/
96>*+/&%&,,-":1?/5-:/9$/5!=/$$
@9$ %&(8&8,7

":1?/5&%&<9.=4!=162/
96>*+/&%&,,-":1?/5-:/9$/5!=/$$4<9.=4!=162/
@9$ %&(8&8,7

Binary
for bot

21

Modified from ./$.$-)1$9!,.B..
© 2008–2018 by the MIT 6.172 Lecturers

Universal Chess Interface (UCI)

Leiserchess uses the Universal Chess
Interface (UCI), a communication protocol for
automatic games to pass information
between the bots and the autotester.
UCI allows the programmer (or autotester) to
enter the move made by the game engine.

https://www.chessprogramming.org/UCI

© 2008–2018 by the MIT 6.172 Lecturers 22

https://www.chessprogramming.org/UCI

Elo Ratings

The Elo rating system measures
relative skill levels in zero-sum
games like chess.
A player’s Elo rating depends on
the Elo ratings of its opponents.

Example output from autotests:
Rank Name Elo + - games score oppo. draws

1 test6 269 137 100 33 94% -140 6%
2 test5 40 96 98 33 55% -29 6%
3 test4 -309 113 185 34 3% 155 0%

© 2008–2018 by the MIT 6.172 Lecturers 23

Webgui

The local webgui lets you watch a game — or
even play one — without sending it to the
scrimmage server.

You can run it using the commands in
webgui/README.

© 2008–2018 by the MIT 6.172 Lecturers 24

!"##$
%&'&(!

"#)*+)$#)*+,*-./01

© 2008–2018 by the MIT 6.172 Lecturers

MOVE GENERATION
(!"#$%&$'())

25

Board Representation

Any chess program needs a
board representation to keep
track of where the pieces are.

The reference
implementation uses a 16x16
board with sentinels to store
an 8x8 board.

Sentinels
off board Actual Board

26

!""#$%&&'''()!*$$#+,-+.//01-(,+-&2,.+345*#+*$*1"."0,1
!""#$%&&'''()!*$$#+,-+.//01-(,+-&6.078,9

!""#$%&&'''()!*$$#+,-+.//01-(,+-&:;9:<42,.+3
© 2008–2018 by the MIT 6.172 Lecturers

https://www.chessprogramming.org/Board_Representation
https://www.chessprogramming.org/Mailbox
https://www.chessprogramming.org/10x12_Board

Position

!"#$%$& '!()*! #+',!,+- .
#,$*$/! 0+1(%2344/56789:
'!()*! #+',!,+-; <,'!+(": ==><,'!+(">+&>#+',!,+-
),-!?@/! A$": ==><1'<>A$"
,-! #B": ==>8C$->#B">1($>D<,!$E>+%%>1($>

FB1*A
G+C$/! B1'!/G+C$: ==>G+C$>!<1!>B$%>!+>!<,'>

#+',!,+-
C,*!,G'/! C,*!,G': ==>#,$*$'>%$'!(+"$%>0">'<++!$(
'H)1($/! AB+*2I9: ==>B+*1!,+->+&>A,-J'

K #+',!,+-/!:

LG+C$/J$-M<NOPOQ

The position in the Leiserchess player stores
the board representation, history, and other
information about how we got to this point in
the game.

Board
representation

27 © 2008–2018 by the MIT 6.172 Lecturers

Move Representation

From
square

Intermediate
square Orientation

(4 choices)

Piece Type
(Empty, Pawn,
King, Invalid)

To
square

2 2 8 8
bits bits bits bits

28 bits

© 2008–2018 by the MIT 6.172 Lecturers 28

8
bits

Move Generation

• At each turn, our program needs to see all
the moves it can possibly make.

• In move_gen.c:286, we generate all the
moves given a position depending on
whose turn it is.

• In the reference implementation, we iterate
through the entire board and generate all
the moves for each piece of the right color
when we pass by it.

© 2008–2018 by the MIT 6.172 Lecturers 29

Perft

!"#$% is a
debugging function
that enumerates all
legal moves of a
certain depth
(&'(")*"+,-./01).
If you modify the
move generator,
make sure that
!"#$% returns the
same results.

uint64_t Perft(int depth)
{

move_t move_list[256];
int n_moves, i;
uint64_t nodes = 0;

if (depth == 0) return 1;

n_moves = move_gen(move_list);
for (i = 0; i < n_moves; i++) {

make_move(move_list[i]);
nodes += Perft(depth - 1);
unmake_move(move_list[i]);

}
return nodes;

}

30

2%%34.55666,-2"443#'*#7&&8+*,'#*5!"#$%

© 2008–2018 by the MIT 6.172 Lecturers

https://www.chessprogramming.org/Perft

!"##$
%&'&(!

"#)*+)$#)*+,*-./01

© 2008–2018 by the MIT 6.172 Lecturers

MOVE ORDERING

31

Move Ordering in Search

Alpha-beta and principal variation search
depend on putting the best moves at the
front to trigger an early cutoff.
How do we determine which moves are
best without static evaluation at every
level?
We call get_sortable_move_list at
search.c:144 and implement it at
search_common.c:402.

© 2008–2018 by the MIT 6.172 Lecturers 32

Move Representation

Moves are represented in 28 bits (int32_t). If
we want to make them sortable, we use 64
bits (int64_t) and use the upper 32 as the
sort key.

The move representation is defined in
move_gen.h:119.

© 2008–2018 by the MIT 6.172 Lecturers 33

!"##$
%&'&(!

"#)*+)$#)*+,*-./01

© 2008–2018 by the MIT 6.172 Lecturers

STATIC EVALUATION
(eval.c)

34

Static Evaluation

We use static evaluation to determine which
positions are better than others (and
therefore which moves we should make).

The function eval(position_t* p), located
at eval.c:438, generates a score given a
position based on heuristics (higher means
better).

At first, we suggest focusing on optimizing
the existing structs and evaluation heuristics
before coming up with new ones.

© 2008–2018 by the MIT 6.172 Lecturers 35

King Heuristics

• KFACE: bonus for your King facing the
enemy king.

• KAGGRESSIVE: bonus for the King with
more space behind it (to the end of the
board)

• MOBILITY: how many spaces around your
King are free.

© 2008–2018 by the MIT 6.172 Lecturers 36

Pawn Heuristics

• PCENTRAL: bonus for Pawns near the center
of the board.

• PBETWEEN: bonus for Pawns between the
two Kings.

© 2008–2018 by the MIT 6.172 Lecturers 37

Distance Heuristics

LCOVERAGE: measures how much the board
near the enemy king is covered by lasers
after making all possible moves from a
position.

© 2008–2018 by the MIT 6.172 Lecturers 38

!"##$
%&'&(!

"#)*+)$#)*+,*-./01

© 2008–2018 by the MIT 6.172 Lecturers

ALGORITHMS FOR
GAME-TREE SEARCH

5

6

2 9

!6

7 4 8

!66

3 6 4

!6

!"##$!!%&'&(%&'&(%&'&(%&'&(!!%&'&(%&'&(%&'&(%&'&(!!
39

Game Search Trees

Position p

Move generation
(!"#$%&$'()) to
enumerate all

possible moves
from a position

Position
p! after
move m

Move m

… …

…

Static evaluation
($#*+())

…

Depth d Implemented in
,$*-).()

40 © 2008–2018 by the MIT 6.172 Lecturers

Quiescence Search

• Evaluating at a fixed depth can leave a
board position in the middle of a capture
exchange.

• At a “leaf” node, continue the search using
only captures — quiet the position.

• Each side has the option of “standing pat.”
• Implemented at search_common:182.

https://www.chessprogramming.org/Quiescence_Search#Standing_Pat

© 2008–2018 by the MIT 6.172 Lecturers 41

https://www.chessprogramming.org/Quiescence_Search#Standing_Pat

Higher Depth Search = Better AI

Elo

42

Depth searched
© 2008–2018 by the MIT 6.172 Lecturers

Min-Max Search

43

!
!

!
!
!

Two players: MAX ! and MIN ".
The game tree represents all moves from the current
position within a given search ply (depth).
At leaves, apply a static evaluation function.
MAX chooses the maximum score among its children.
MIN chooses the minimum score among its children.

© 2008–2018 by the MIT 6.172 Lecturers

Alpha-Beta Strategy

∙ Each search from a node employs a window
[alpha, beta].

∙ If the value of the search falls below alpha,
keep searching.

∙ If the value of the search falls between alpha
and beta, then increase alpha and keep
searching.

∙ If the value of the search falls above beta,
generate a beta cutoff and return.

© 2008–2018 by the MIT 6.172 Lecturers 44

Alpha-Beta Pruning

5 2 9 7 4 8 3 6 4

45

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers

Alpha-Beta Pruning

5 2 9 7 4 8 3 6 4

46

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers

Alpha-Beta Pruning

5 2 9 7 4 8 3 6 4

47

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers

Alpha-Beta Pruning

5 2 9 7 4 8 3 6 4

48

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers

Alpha-Beta Pruning

5 2 9 7 4 8

3

3 6 4

49

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers

Alpha-Beta Pruning

5 2 9 7 4 8

3

3 6 4

50

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers

Alpha-Beta Pruning

5 2 9 7 4 8

6

3 6 4

51

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers

Alpha-Beta Pruning

5 2 9 7 4 8

6

3 6 4

52

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers

Alpha-Beta Pruning

5 2 9 7 4 8

6

3 6 4

53

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers

Alpha-Beta Pruning

5

6

2 9 7 4 8

6

3 6 4

54

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers

Alpha-Beta Pruning

5

6

2 9 7 4 8

6

3 6 4

55

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers

Alpha-Beta Pruning

5

6

2 9 7 4 8

6

3 6 4

56

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers

Alpha-Beta Pruning

5

6

2 9

2

7 4 8

6

3 6 4

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers 57

Alpha-Beta Pruning

5

6

2 9

2

7 4 8

6

3 6 4

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers 58

Alpha-Beta Pruning

5

6

2 9

!6

7 4 8

6

3 6 4

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers 59

Alpha-Beta Pruning

5

6

2 9

!6

7 4 8

6

3 6 4

!

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers 60

Alpha-Beta Pruning

5

6

2 9

!6

7 4 8

6

3 6 4

!

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers 61

Alpha-Beta Pruning

5

6

2 9

!6

7 4 8

6

3 6 4

!

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers 62

Alpha-Beta Pruning

5

6

2 9

!6

7 4 8

6

3 6 4

!

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers 63

Alpha-Beta Pruning

5

6

2 9

!6

7 4 8

!66

3 6 4

!

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers 64

Alpha-Beta Pruning

5

6

2 9

!6

7 4 8

!66

3 6 4

! !!

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers 65

Alpha-Beta Pruning

5

6

2 9

!6

7 4 8

!66

3 6 4

! !!

IDEA: If MAX discovers a move so good that MIN would
never allow that position, MAX’s other children need not
be searched — beta cutoff.

© 2008–2018 by the MIT 6.172 Lecturers 66

Alpha-Beta Pruning

Let’s consider the pruning performed by Alpha-Beta on a game tree that
does not have an optimal move ordering.

! " #$

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0

! % &

! ' &

© 2008–2018 by the MIT 6.172 Lecturers 67

Alpha-Beta Pruning

Let’s consider the pruning performed by Alpha-Beta on a game tree that
does not have an optimal move ordering.

! " #$

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0

! % &

! ' &

! " (

!!

© 2008–2018 by the MIT 6.172 Lecturers 68

Alpha-Beta Pruning

Let’s consider the pruning performed by Alpha-Beta on a game tree that
does not have an optimal move ordering.

! " #$

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0

! % &

! ' &

! " (

!! !!

69 © 2008–2018 by the MIT 6.172 Lecturers

! ")

Alpha-Beta Pruning

Let’s consider the pruning performed by Alpha-Beta on a game tree that
does not have an optimal move ordering.

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0

! $ #

! $ #

! " %

!! !!

© 2008–2018 by the MIT 6.172 Lecturers 70

! " &

Alpha-Beta Pruning

Let’s consider the pruning performed by Alpha-Beta on a game tree that
does not have an optimal move ordering.

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0

! $ #

! $ #

! " %

!! !!

! ' &

! $ &

© 2008–2018 by the MIT 6.172 Lecturers 71

! " &

Alpha-Beta Pruning

Let’s consider the pruning performed by Alpha-Beta on a game tree that
does not have an optimal move ordering.

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0

! $ #

! $ #

! " %

!! !!

! ' &

! $ & ! $ (

© 2008–2018 by the MIT 6.172 Lecturers 72

! " &

Alpha-Beta Pruning

Let’s consider the pruning performed by Alpha-Beta on a game tree that
does not have an optimal move ordering.

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0

! $ #

! $ #

! " %

!! !!

! ' &

! $ & ! (& ! (&

!!!!

© 2008–2018 by the MIT 6.172 Lecturers 73

! " &

Alpha-Beta Pruning

Let’s consider the pruning performed by Alpha-Beta on a game tree that
does not have an optimal move ordering.

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0

! $ %

! $ %

! " &

!! !!

! $ #

! $ # ! ' # ! ' #

!!!!

© 2008–2018 by the MIT 6.172 Lecturers 74

! " #

Alpha-Beta Pruning

Let’s consider the pruning performed by Alpha-Beta on a game tree that
does not have an optimal move ordering.

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0

! $ %

! $ %

! " &

!!

! " #

!!

! $ #

! $ # ! ' # ! ' #

!!

! $ &

! (&

!!

© 2008–2018 by the MIT 6.172 Lecturers 75

Alpha-Beta Pruning

Let’s consider the pruning performed by Alpha-Beta on a game tree that
does not have an optimal move ordering.

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0

! $ %

! $ %

! " &

!!

! " #

!!

! $ #

! $ # ! ' # ! ' #

!!

! $ &

! ()

! $) !

!!

11 Leaves Pruned

© 2008–2018 by the MIT 6.172 Lecturers 76

Alpha-Beta Analysis

Theorem [KM75]. For a game tree with branching
factor b and depth d, an alpha-beta search with moves
searched in best-first order examines exactly b!d/2" +
b#d/2$ - 1 nodes at ply d. %
The naive algorithm examines bd nodes at ply d. For
the same work, the search depth is effectively doubled.
For the same depth, the work is square-rooted.

© 2008–2018 by the MIT 6.172 Lecturers 77

Code for Alpha-Beta Pruning

78 © 2008–2018 by the MIT 6.172 Lecturers

Code for Alpha-Beta Pruning

© 2008–2018 by the MIT 6.172 Lecturers 79

Principal Variation Search Pruning

Idea: Assume the first move is the best, and run scout search (“zero
window” search) on the remaining moves to verify that they are worse.

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0

! $ #

! $ #

Zero-Window Search
(from min’s perspective)

Score in %&' &(
Full Window

Score in %)*' &(

Subtrees executed with scout search

© 2008–2018 by the MIT 6.172 Lecturers 80

Principal Variation Search Pruning

Fail-Bad: If the zero window search returns a worse score than the first
subtree, we can safely skip the full-window search in those subtrees.

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0

! $ #

!!

Full Window
Score in %)*' &(

Zero-Window Search
(from min’s perspective)

Score in %&' &(

! " #

! $ #

!!

Subtrees executed with scout search

© 2008–2018 by the MIT 6.172 Lecturers 81

! " #

Principal Variation Search Pruning

© 2008–2018 by the MIT 6.172 Lecturers

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0

! $ # ! " #

! $ #

!!

! " #

!!

Subtrees executed with scout search
82

Principal Variation Search Pruning

Let’s see a case where the scout search fails-good.

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0

! " #

! $ #

!!

7 0 0 7 0 8 6 1 0 2 3 0

! $ # ! " #

!!

Zero-Window Search
(from min’s perspective)

Score in %&' &(
Full Window

Score in %)*' &(

Subtrees executed with scout search

© 2008–2018 by the MIT 6.172 Lecturers 83

Principal Variation Search Pruning

Let’s see a case where the scout search fails-good.

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0

! " #

! $ #

!!

7 0 0 7 0 8 6 1 0 2 3 0

! $ # ! " #

!!

! % #

!! !!

! % # ! % #

!!

Zero-Window Search
(from min’s perspective)

Score in &'(')
Full Window

Score in &*+(')

Subtrees executed with scout search

© 2008–2018 by the MIT 6.172 Lecturers 84

© 2008–2018 by the MIT 6.172 Lecturers

Principal Variation Search Pruning

Fail-Good: Zero-window search says the move might be better. Must do a
full window search.

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0

! " #

! $ #

!!

2 0 0 7 0 0 7 0 8 6 1 0 2 3 0

! $ # ! " #

!!

! % #

!! !!

! % # ! % #

!!

! % #

Full Search
Required

85

Principal Variation Search Pruning

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0

! $ % ! " %

! $ %

!!

! " %

!!

! $ # ! & # ! & #

!!

! $ #

!!

Subtrees executed with scout search

© 2008–2018 by the MIT 6.172 Lecturers 86

Principal Variation Search Pruning

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0

! $ % ! " %

! $ %

!!

! " %

!!

! $ # ! & # ! & #

!!

! $ #

! & #

! ' #

!! ' #

!!!!

Subtrees executed with scout search

© 2008–2018 by the MIT 6.172 Lecturers 87

Principal Variation Search Pruning

Scout search can improve pruning (modestly). Notice that most of the
game-tree was processed using only zero-window searches…

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0

! $ % ! " %

! $ %

!!

! " %

!!

! $ # ! & # ! & #

!!

! $ #

! & #

! ' #

!! ' #

!!!!

13 Leaves Pruned

Subtrees executed with scout search

© 2008–2018 by the MIT 6.172 Lecturers 88

!"##$
%&'&(!

"#)*+)$#)*+,*-./01

© 2008–2018 by the MIT 6.172 Lecturers

SEARCH OPTIMIZATIONS

89

Transposition Table

Chess programs often encounter the same
positions repeatedly during their search.
A transposition table stores results of
previous searches in a hash table to avoid
unnecessary work.
• Call to update: search.c:195.
• Update function: search_globals.c:56.
• Used to order moves in search.c:105.

https://www.chessprogramming.org/Transposition_Table

© 2008–2018 by the MIT 6.172 Lecturers 90

https://www.chessprogramming.org/Transposition_Table

Zobrist Hashing

Zobrist hashing is a rolling hashing technique
to convert a board position into a number of
fixed length with uniform probability over all
possible numbers (move_gen.c:112).
The transposition table uses Zobrist hashing
to index into it.
Note: If you change the piece representation
and want to use node counts to debug, you
must recompute the zobrist hash from the old
piece representation.

https://www.chessprogramming.org/Zobrist_Hashing

© 2008–2018 by the MIT 6.172 Lecturers 91

https://www.chessprogramming.org/Zobrist_Hashing

Killer Move Table

The killer move table stores moves so good
that the opponent would prevent you from
going down that path, so you can early exit
and avoid exploring that subtree.
The table is indexed by ply, because you tend
to see the same moves at the same depth.
• Table at search_globals.c:11.
• Set at search_common.c:378.
• Used in search_common.c:409.

https://www.chessprogramming.org/Killer_Heuristic

© 2008–2018 by the MIT 6.172 Lecturers 92

https://www.chessprogramming.org/Killer_Heuristic

Best-Move Table

The best move is stored at the root of a
search and is the move that gained the
maximum score.
The best-move table is indexed by color,
piece, square, and orientation.
• Best-move history table at
search_globals:17.
• Updated at search_common:367.

https://www.chessprogramming.org/Best_Move

© 2008–2018 by the MIT 6.172 Lecturers 93

https://www.chessprogramming.org/Best_Move

Null-Move Pruning

Null-move pruning first tries to reduce the
search space by not moving and then doing a
shallower search to see if the subtree can still
cause a beta cutoff.
If the tree can cause a beta cutoff even
without a move, it is too good. The opponent
would not let us go there, and so the search
does not bother to explore it.
• Implemented at search_common.c:193.

https://www.chessprogramming.org/Enhanced_Forward_Pruning
https://www.chessprogramming.org/Null_Move_Pruning

© 2008–2018 by the MIT 6.172 Lecturers 94

https://www.chessprogramming.org/Enhanced_Forward_Pruning
https://www.chessprogramming.org/Null_Move_Pruning

Futility Pruning

Futility pruning only explores moves that have
the potential to increase alpha.
It calculates this possibility by adding a futility
margin (the largest possible gain) to the
evaluation of the current position.
If the result does not exceed alpha, skip the
search of this move.
• Implemented at search_common.c:209.

https://www.chessprogramming.org/Futility_Pruning

© 2008–2018 by the MIT 6.172 Lecturers 95

https://www.chessprogramming.org/Futility_Pruning

Late-Move Reduction

After ordering the moves from a position, the
moves at the front of the list are more likely
to cause a cutoff.
Late-move reduction searches the first few (3
or 4) moves to full depth and the remaining
ones with less depth.
• Implemented in scout search at
search_common.c:289.

https://www.chessprogramming.org/Late_Move_Reductions

© 2008–2018 by the MIT 6.172 Lecturers 96

https://www.chessprogramming.org/Late_Move_Reductions

Opening Book

Opening books store positions at the
beginning of the game.
Idea: Precompute the best moves at the
beginning of the game.
They save time in searching and can store
results to a higher depth.
The [KM75] theorem implies it is cheaper to
keep separate opening books for each side
than one opening book for both.

https://www.chessprogramming.org/Opening_Book
© 2008–2018 by the MIT 6.172 Lecturers

97

https://www.chessprogramming.org/Opening_Book

Endgame Database

An endgame database is a table for guiding a
chess program through the endgame.
For endgame positions, the distance from the
end might be too far to search. With an
endgame database, you can store who will win
and how far you are from the end of the
game.
player/end_game.c is a great place to store an
endgame database.

https://www.chessprogramming.org/Endgame
© 2008–2018 by the MIT 6.172 Lecturers

98

https://www.chessprogramming.org/Endgame

!"##$
%&'&(!

"#)*+)$#)*+,*-./01

© 2008–2018 by the MIT 6.172 Lecturers

TIPS AND TRICKS

99

Chess Programming

• The Chess Programming wiki
(https://www.chessprogramming.org) is
an invaluable resource for learning about
the parts of a chess-playing program.

https://www.chessprogramming.org
© 2008–2018 by the MIT 6.172 Lecturers

100

https://www.chessprogramming.org
https://www.chessprogramming.org

General Guidelines

• Test often! It is easy to make a mistake
with your optimizations that does not
appear when you just search to fixed
depth.

• Testing methodology
• WebGUI
• Java Autotester
• Cloud Autotester
• Node counts
• Function comparison testing

© 2008–2018 by the MIT 6.172 Lecturers
101

Optimization Tips

• Start with optimizations that do not affect
the search (e.g. modifying the board
representation).

• Improve the existing heuristics before
trying to come up with your own.

• There are plenty of serial optimizations
that you can make before thinking about
parallelization.

© 2008–2018 by the MIT 6.172 Lecturers
102

MIT OpenCourseWare
https://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

103

