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Leiserchess Board Game 

Two players: Tangerine & Lavender 

Each player has 7 Pawns and 1 King 

4 Orientations Pawn 

King 
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General Gameplay 

• Tangerine moves first, then play alternates
between the two players.

• All pieces move the same (King or Pawn)
• Each turn has two parts: moving and firing

the laser.
• The laser reflects off the long edge of the

pawns and kills a pawn if it hits the other
sides.

• One side wins when its King shoots the
other King with its laser.
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How to Move 

• At the beginning of each turn, the player
on move chooses a piece to move.

• There are two types of moves: basic and
swap.
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Basic Moves 

! On a basic move, a
piece can either:
! rotate 90, 180, or

270 degrees
! move to an empty

adjacent square in
any of the eight
compass directions
while maintaining
orientation.

! A piece cannot both
rotate and move.
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Swap Moves 

If an enemy piece occupies an adjacent square 
to the player’s piece, the two pieces swap 
squares (maintaining their orientation) and the 
player’s piece must make an extra basic move. 

© 2008–2018 by the MIT 6.172 Lecturers 7 



   

 

Ko Rule 

! A Ko rule (familiar from the game of Go)
helps to ensure that the game makes
progress.

! A move is illegal if it “undoes” the
opponent’s most recent move by returning
to the position immediately prior to the
current position.

Tangerine performs a swap move. Lavender performs a swap move 
to undo Tangerine’s move. 
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Draws 

• A draw occurs if:
• There have been 50 moves by each side

without a Pawn being zapped,
• The same position repeats itself with the

same side on move, or
• The two players agree to a draw.
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We shall use Fischer time control,

When it’s your move, your clock counts down.

 

 
     

 

Time Control 

! A chess clock limits the amount of time
players have to make a move.

! When it’s your move, your clock counts down.
! When it’s your opponent’s move,

your clock stops.
! We shall use Fischer time control,

which specifies an initial time
budget and a time increment. Bobby Fischer 

! The notation !"# $% %&' means each player is
allocated a time budget of 60 seconds to
begin, and 0.5 seconds is added to the
budget each time the player makes a move.

())*#+,,-.&/"0"*-1"2&345,/"0",6"7-893.)43: 
10 © 2008–2018 by the MIT 6.172 Lecturers Image is in the public domain via the Dutch National Archives. 

http://www.gahetna.nl/collectie/afbeeldingen/fotocollectie/zoeken/weergave/detail/q/id/abdf9680-d0b4-102d-bcf8-003048976d84
https://en.wikipedia.org/wiki/time_control


   

   
 

Leiserchess Tactics 

! For a King to zap the enemy King, it risks
opening itself up to counterattack.

! For example, how can Tangerine zap the
Lavender Pawn on !"?

! 
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) * + , - . / 0 
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Leiserchess Tactics 

Tangerine can zap Lavender’s pawn on !" by 
moving its pawn on #$ to #%.  Now, how can 
Lavender counter? 

! 
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) * + , - . / 0 
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Leiserchess Tactics 

Lavender can counter by moving its pawn on !"
to #$, zapping the Tangerine King and winning 
the game. 

! 
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$ 
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) * + , - . / 0 
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Forsyth-Edwards Notation (FEN) 
FEN describes a chess position using 

David a character string (see #9.3*+&:*1()). 
Forsyth 

14 
This image is in the public domain. 

Example (opening position): 
$$;&<1'$*<&=1'$*>&?1'$*<8@?&?$*<8@A5?&>8@A5=&<8@A5<&;88B@ 

!""#$%&&'''()!*$$#+,-+.//01-(,+-&2,+$3"!456'.+6$78,"."0,1 
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Forsyth-Edwards Notation (FEN) 
FEN describes a chess position using 

David a character string (see #9.3*+&:*1()). 
Forsyth 

$$;&<1'$*<&=1'$*>&?1'$*<8@?&?$*<8@A5?&>8@A5=&<8@A5<&;88B@ 

Example (opening position): 

Slashes separate rows 
! 1 space
! Lavender Pawn facing SE
! 3 spaces
! Tangerine Pawn facing NW
! Tangerine Pawn facing SE
! 1 space

!""#$%&&'''()!*$$#+,-+.//01-(,+-&2,+$3"!456'.+6$78,"."0,1 
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Forsyth-Edwards Notation (FEN) 
FEN describes a chess position using 

David a character string (see #9.3*+&:*1()). 
Forsyth 

Example (opening position): 

Player to move. 
! @ = Tangerine
! C = Lavender

$$;&<1'$*<&=1'$*>&?1'$*<8@?&?$*<8@A5?&>8@A5=&<8@A5<&;88B@ 

© 2008–2018 by the MIT 6.172 Lecturers 16 
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2" '3,####4!-*
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%3" 4!-*###6!-*6+
%!" '(7####6+/#
%*" '(1&###6)/
%+" 0&'(###4*7
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%(" -!4!###4)-)
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%2" 03$!###'+0+
%5" $!.!###0+$+
&3" '(0&###$+.+
38!

*&" -& Swap move  with 

5" 0+'%###1),#translation 
2" Basi$*$+###0+$+$*#c move with

*(" -%-& translation  6(#1)')0(#
$&0('&#6), 

6%###-%6%-&

*3" '%1+4%#6)-) 
*!" Bas4%-&###'%1&1(#ic move
**" wi.%$&###$*0+#th rotation
*+" '%0+'*#'%0+ 
*%" '*0+$+#-)6)#

!=*8!=* Draw +%"#1343/##6!-*4!

83 Tangerine wi+*"#0(0&###4*1!43ns !&" '!13###'%1+! 
!(" -&4%###1&4%4+#38!
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*%" '*0+$+#-)6)#
*&" -&6%###-%6%-&
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%!" '(7####6+/#
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!2" $*$+###0+$+$*#
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+&" '&'(###4+4*
+(" 6!-!###4!,
+)" -!/####13/#
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Algebraic Notation for Games 

!
!" $%$&###'(') 
*" $&$%###')'( 
+" $%,####-+,# 
%" $%.&###-%/ 
&" 0+'%###1&'%0& 
(" 0*'+###0&$& 
)" .&$(###$&.% 
2" .3$3###4%/ 
5" '+'%###-+-* 
!3" $303###1(1)
!!" 1&4&-&#.%$+0*
!*" '*0*$*#4%-+
!+" '%1&/##1),
!%" 1&'(')#-*-!

*)" 
*2" $($&0&#1(1),# 
*5" 03'!###1)4)# 

*)" $&0('&#6),

+3" '!'3###-%4+

Swap move 
with rotation 

.99:;<=='>"?@A@:'1@6"BC$=?@A@=DE$'-C6@4F>B969@B>FG4.';;H 
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Basic move with
translation

Basic move 
with rotation

Swap move with 
translation

1-0 Tangerine wins
0-1 Lavender wins

1/2-2/1 Draw

https://en.wikipedia.org/wiki/Algebraic_notation_(chess)
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README 

Directories under project4: 
doc: Leiserchess rules and documentation for the 

game-engine interface. 

autotester: Java local autotester 

BayesElo: parses Elo results from autotester. 

pgnstats: parses statistics from autotester results. 

tests: test specifications for the local autotester. 

player: code for your Leiserchess bot. You will be 
optimizing the code in here! 

webgui: local webgui where you can watch the game 
and play it. 
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Java Autotester 

The Java local autotester is in autotester/
under the code distribution. 
You can test changes to your bot using time 
trials over many games. 
The tests/ directory holds configuration files 
for your autotests: 
• number of games,
• bots in your trials,
• time control,
• etc.
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Java Autotester Configuration 

!"#$ %&'( 
)**+&%&,,-./$.$-)**+,0.1 
213/45*#60$ %&788 
.9.:/&%&)1$9! 

;&6*<&</&=1>/&.=/&":1?/5&0/@969.9*6$ 
;&AA 

":1?/5&%&5/@/5/6!/ 
96>*+/&%&,,-":1?/5-:/9$/5!=/$$ 
@9$ %&(8&8,7 

":1?/5&%&<9.=4!=162/ 
96>*+/&%&,,-":1?/5-:/9$/5!=/$$4<9.=4!=162/ 
@9$ %&(8&8,7 

Binary 
for bot 

21 

Modified from ./$.$-)1$9!,.B.. 
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Universal Chess Interface (UCI) 

Leiserchess uses the Universal Chess 
Interface (UCI), a communication protocol for 
automatic games to pass information 
between the bots and the autotester. 
UCI allows the programmer (or autotester) to 
enter the move made by the game engine. 

https://www.chessprogramming.org/UCI 
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Elo Ratings 

The Elo rating system measures 
relative skill levels in zero-sum 
games like chess. 
A player’s Elo rating depends on 
the Elo ratings of its opponents. 

Example output from autotests: 
Rank Name Elo + - games score oppo. draws

1 test6 269 137 100 33 94% -140 6% 
2 test5 40 96 98 33 55% -29 6% 
3 test4 -309 113 185 34 3% 155 0% 
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Webgui 

The local webgui lets you watch a game — or 
even play one — without sending it to the 
scrimmage server. 

You can run it using the commands in 
webgui/README. 

© 2008–2018 by the MIT 6.172 Lecturers 24
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Board Representation 

Any chess program needs a
board representation to keep
track of where the pieces are. 

The reference 
implementation uses a 16x16 
board with sentinels to store 
an 8x8 board. 

Sentinels 
off board Actual Board 

26 

!""#$%&&'''()!*$$#+,-+.//01-(,+-&2,.+345*#+*$*1"."0,1 
!""#$%&&'''()!*$$#+,-+.//01-(,+-&6.078,9 

!""#$%&&'''()!*$$#+,-+.//01-(,+-&:;9:<42,.+3 
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Position 

!"#$%$& '!()*! #+',!,+- . 
#,$*$/! 0+1(%2344/56789: 
'!()*! #+',!,+-; <,'!+(": ==><,'!+(">+&>#+',!,+-
),-!?@/! A$": ==><1'<>A$" 
,-! #B": ==>8C$->#B">1($>D<,!$E>+%%>1($> 

FB1*A 
G+C$/! B1'!/G+C$: ==>G+C$>!<1!>B$%>!+>!<,'> 

#+',!,+-
C,*!,G'/! C,*!,G': ==>#,$*$'>%$'!(+"$%>0">'<++!$( 
'H)1($/! AB+*2I9: ==>B+*1!,+->+&>A,-J' 

K #+',!,+-/!: 

LG+C$/J$-M<NOPOQ 

The position in the Leiserchess player stores 
the board representation, history, and other 
information about how we got to this point in 
the game. 

Board 
representation 

27 © 2008–2018 by the MIT 6.172 Lecturers 



Move Representation 

From 
square 

Intermediate 
square Orientation 

(4 choices) 

Piece Type
(Empty, Pawn, 
King, Invalid) 

  

 

  
  

 
 

To 
square 

2 2 8 8 
bits bits bits bits 

28 bits 
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Move Generation 

• At each turn, our program needs to see all
the moves it can possibly make.

• In move_gen.c:286, we generate all the
moves given a position depending on
whose turn it is.

• In the reference implementation, we iterate
through the entire board and generate all
the moves for each piece of the right color
when we pass by it.
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Perft 

!"#$% is a 
debugging function
that enumerates all 
legal moves of a 
certain depth
(&'(")*"+,-./01). 
If you modify the 
move generator,
make sure that 
!"#$% returns the 
same results. 

uint64_t Perft(int depth)
{

move_t move_list[256];
int n_moves, i;
uint64_t nodes = 0;

if (depth == 0) return 1;

n_moves = move_gen(move_list);
for (i = 0; i < n_moves; i++) {

make_move(move_list[i]);
nodes += Perft(depth - 1);
unmake_move(move_list[i]);

}
return nodes;

}

30 

2%%34.55666,-2"443#'*#7&&8+*,'#*5!"#$% 
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Move Ordering in Search 

Alpha-beta and principal variation search 
depend on putting the best moves at the 
front to trigger an early cutoff. 
How do we determine which moves are 
best without static evaluation at every 
level? 
We call get_sortable_move_list at 
search.c:144 and implement it at
search_common.c:402. 
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Move Representation 

Moves are represented in 28 bits (int32_t). If 
we want to make them sortable, we use 64 
bits (int64_t) and use the upper 32 as the 
sort key. 

The move representation is defined in 
move_gen.h:119. 

© 2008–2018 by the MIT 6.172 Lecturers 33
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Static Evaluation 

We use static evaluation to determine which 
positions are better than others (and 
therefore which moves we should make). 

The function eval(position_t* p), located 
at eval.c:438, generates a score given a 
position based on heuristics (higher means 
better). 

At first, we suggest focusing on optimizing 
the existing structs and evaluation heuristics 
before coming up with new ones. 
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King Heuristics 

• KFACE: bonus for your King facing the
enemy king.

• KAGGRESSIVE: bonus for the King with
more space behind it (to the end of the
board)

• MOBILITY: how many spaces around your
King are free.
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Pawn Heuristics 

• PCENTRAL: bonus for Pawns near the center
of the board.

• PBETWEEN: bonus for Pawns between the
two Kings.

© 2008–2018 by the MIT 6.172 Lecturers 37



  

     
        

    

Distance Heuristics 

LCOVERAGE: measures how much the board 
near the enemy king is covered by lasers 
after making all possible moves from a 
position. 

© 2008–2018 by the MIT 6.172 Lecturers 38
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ALGORITHMS FOR 
GAME-TREE SEARCH 

5 

6 

2 9 

!6

7 4 8 

!66 

3 6 4 

!6

!"##$!!%&'&(%&'&(%&'&(%&'&(!!%&'&(%&'&(%&'&(%&'&(!!
39 



 

 

 

  

 
  

 

 

 
 

Game Search Trees 

Position p 

Move generation 
(!"#$%&$'()) to 
enumerate all 

possible moves 
from a position 

Position 
p! after 
move m 

Move m 

… … 

… 

Static evaluation 
($#*+()) 

… 

Depth d Implemented in 
,$*-).() 

40 © 2008–2018 by the MIT 6.172 Lecturers 



  

     
      

    
   
      

  

Quiescence Search 

• Evaluating at a fixed depth can leave a
board position in the middle of a capture
exchange.

• At a “leaf” node, continue the search using
only captures — quiet the position.

• Each side has the option of “standing pat.”
• Implemented at search_common:182.

https://www.chessprogramming.org/Quiescence_Search#Standing_Pat 
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Higher Depth Search = Better AI 

Elo 

42 

Depth searched 
© 2008–2018 by the MIT 6.172 Lecturers 



  

 

Min-Max Search 

43 

!
!

!
!
!

Two players: MAX ! and MIN ".
The game tree represents all moves from the current 
position within a given search ply (depth).
At leaves, apply a static evaluation function.
MAX chooses the maximum score among its children.
MIN chooses the minimum score among its children.
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Alpha-Beta Strategy 

∙ Each search from a node employs a window
[alpha, beta].

∙ If the value of the search falls below alpha,
keep searching.

∙ If the value of the search falls between alpha
and beta, then increase alpha and keep
searching.

∙ If the value of the search falls above beta,
generate a beta cutoff and return.
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Alpha-Beta Pruning 

5 2 9 7 4 8 3 6 4 

45 

IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 

© 2008–2018 by the MIT 6.172 Lecturers 



   
     

 

Alpha-Beta Pruning 

5 2 9 7 4 8 3 6 4 

46 

IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 

© 2008–2018 by the MIT 6.172 Lecturers 



   
     

 

Alpha-Beta Pruning 

5 2 9 7 4 8 3 6 4 

47 

IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 

© 2008–2018 by the MIT 6.172 Lecturers 



   
     

 

Alpha-Beta Pruning 

5 2 9 7 4 8 3 6 4 

48 

IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 

© 2008–2018 by the MIT 6.172 Lecturers 



   
     

 

Alpha-Beta Pruning 

5 2 9 7 4 8 

3 

3 6 4 

49 

IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 

© 2008–2018 by the MIT 6.172 Lecturers 



   
     

 

Alpha-Beta Pruning 

5 2 9 7 4 8 

3 

3 6 4 

50 

IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 

© 2008–2018 by the MIT 6.172 Lecturers 



   
     

 

Alpha-Beta Pruning 

5 2 9 7 4 8 

6 

3 6 4 

51 

IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 

© 2008–2018 by the MIT 6.172 Lecturers 



   
     

 

Alpha-Beta Pruning 

5 2 9 7 4 8 

6 

3 6 4 

52 

IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 

© 2008–2018 by the MIT 6.172 Lecturers 



   
     

 

Alpha-Beta Pruning 

5 2 9 7 4 8 

6 

3 6 4 

53 

IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 

© 2008–2018 by the MIT 6.172 Lecturers 



   
     

 

Alpha-Beta Pruning 

5 

6 

2 9 7 4 8 

6 

3 6 4 

54 

IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 

© 2008–2018 by the MIT 6.172 Lecturers 



   
     

 

Alpha-Beta Pruning 

5 

6 

2 9 7 4 8 

6 

3 6 4 

55 

IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 

© 2008–2018 by the MIT 6.172 Lecturers 



   
     

 

Alpha-Beta Pruning 

5 

6 

2 9 7 4 8 

6 

3 6 4 

56 

IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 

© 2008–2018 by the MIT 6.172 Lecturers 



   
     

 

Alpha-Beta Pruning 

5 

6 

2 9 

2 

7 4 8 

6 

3 6 4 

IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 
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Alpha-Beta Pruning 

5 

6 

2 9 

2 

7 4 8 

6 

3 6 4 

IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 
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Alpha-Beta Pruning 

5 

6 

2 9 

!6

7 4 8 

6 

3 6 4 

IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 
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Alpha-Beta Pruning 

5 

6 

2 9 

!6

7 4 8 

6 

3 6 4 

!

IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 
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Alpha-Beta Pruning 

5 

6 

2 9 

!6

7 4 8 

6 

3 6 4 

!

IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 
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Alpha-Beta Pruning 

5 

6 

2 9 

!6

7 4 8 

6 

3 6 4 

!

IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 
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Alpha-Beta Pruning 

5 

6 

2 9 

!6

7 4 8 

6 

3 6 4 

!

IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 
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Alpha-Beta Pruning 

5 

6 

2 9 

!6

7 4 8 

!66 
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IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 
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Alpha-Beta Pruning 
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IDEA: If MAX discovers a move so good that MIN would 
never allow that position, MAX’s other children need not 
be searched — beta cutoff. 
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Alpha-Beta Pruning 

Let’s consider the pruning performed by Alpha-Beta on a game tree that 
does not have an optimal move ordering. 

! " #$

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0 

! % &

! ' &
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Alpha-Beta Pruning 

Let’s consider the pruning performed by Alpha-Beta on a game tree that 
does not have an optimal move ordering. 

! " #$

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0 

! % &

! ' &

! " (

!!
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Alpha-Beta Pruning 

Let’s consider the pruning performed by Alpha-Beta on a game tree that 
does not have an optimal move ordering. 

! " #$

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0 

! % &

! ' &

! " (

!! !!
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Alpha-Beta Pruning 

Let’s consider the pruning performed by Alpha-Beta on a game tree that 
does not have an optimal move ordering. 

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0 

! $ #

! $ #

! " %

!! !!
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Alpha-Beta Pruning 

Let’s consider the pruning performed by Alpha-Beta on a game tree that 
does not have an optimal move ordering. 

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0 

! $ #

! $ #

! " %

!! !!

! ' &

! $ &
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Alpha-Beta Pruning 

Let’s consider the pruning performed by Alpha-Beta on a game tree that 
does not have an optimal move ordering. 

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0 

! $ #

! $ #

! " %

!! !!

! ' &

! $ & ! $ (
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Alpha-Beta Pruning 

Let’s consider the pruning performed by Alpha-Beta on a game tree that 
does not have an optimal move ordering. 

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0 

! $ #

! $ #

! " %

!! !!

! ' &

! $ & ! ( & ! ( &

!!!!
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Alpha-Beta Pruning 

Let’s consider the pruning performed by Alpha-Beta on a game tree that 
does not have an optimal move ordering. 

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0 

! $ %

! $ %

! " &

!! !!

! $ #

! $ # ! ' # ! ' #

!!!!
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Alpha-Beta Pruning 

Let’s consider the pruning performed by Alpha-Beta on a game tree that 
does not have an optimal move ordering. 

 

      

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0 

! $ %

! $ %

! " &

!!

! " #

!!

! $ #

! $ # ! ' # ! ' #

!!

! $ &

! ( &

!!
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Alpha-Beta Pruning 

Let’s consider the pruning performed by Alpha-Beta on a game tree that 
does not have an optimal move ordering. 

 

      

 

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0 

! $ %

! $ %

! " &

!!

! " #

!!

! $ #

! $ # ! ' # ! ' #

!!

! $ &

! ( )

! $ ) !

!!

11 Leaves Pruned 
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Alpha-Beta Analysis 

Theorem [KM75].  For a game tree with branching 
factor b and depth d, an alpha-beta search with moves 
searched in best-first order examines exactly b!d/2" + 
b#d/2$ - 1 nodes at ply d. %
The naive algorithm examines bd nodes at ply d. For 
the same work, the search depth is effectively doubled. 
For the same depth, the work is square-rooted. 
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Code for Alpha-Beta Pruning 
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Code for Alpha-Beta Pruning 
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Principal Variation Search Pruning 

Idea: Assume the first move is the best, and run scout search (“zero 
window” search) on the remaining moves to verify that they are worse. 

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0 

! $ #

! $ #

Zero-Window Search 
(from min’s perspective) 

Score in %&' &(
Full Window 

Score in %)*' &(

Subtrees executed with scout search 
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Principal Variation Search Pruning 

Fail-Bad: If the zero window search returns a worse score than the first 
subtree, we can safely skip the full-window search in those subtrees. 

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0 

! $ #

!!

Full Window 
Score in %)*' &(

Zero-Window Search 
(from min’s perspective) 

Score in %&' &(

! " #

! $ #

!!

Subtrees executed with scout search 
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Principal Variation Search Pruning 
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! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0 

! $ # ! " #

! $ #

!!

! " #

!!

Subtrees executed with scout search 
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Principal Variation Search Pruning 

Let’s see a case where the scout search fails-good. 

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 

! " #

! $ #

!!

7 0 0 7 0 8 6 1 0 2 3 0 

! $ # ! " #

!!

Zero-Window Search 
(from min’s perspective) 

Score in %&' &(
Full Window 

Score in %)*' &(

Subtrees executed with scout search 
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Principal Variation Search Pruning 

Let’s see a case where the scout search fails-good. 

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 

! " #

! $ #

!!

7 0 0 7 0 8 6 1 0 2 3 0 

! $ # ! " #

!!

! % #

!! !!

! % # ! % #

!!

Zero-Window Search 
(from min’s perspective) 

Score in &'( ')
Full Window 

Score in &*+( ')

Subtrees executed with scout search 
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Principal Variation Search Pruning 

Fail-Good: Zero-window search says the move might be better. Must do a 
full window search. 

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 

! " #

! $ #

!!

2 0 0 7 0 0 7 0 8 6 1 0 2 3 0 

! $ # ! " #

!!

! % #

!! !!

! % # ! % #

!!

! % #

Full Search 
Required 
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Principal Variation Search Pruning 

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0 

! $ % ! " %

! $ %

!!

! " %

!!

! $ # ! & # ! & #

!!

! $ #

!!

Subtrees executed with scout search 

© 2008–2018 by the MIT 6.172 Lecturers 86



Principal Variation Search Pruning 

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0 

! $ % ! " %

! $ %

!!

! " %

!!

! $ # ! & # ! & #

!!

! $ #

! & #

! ' #

!! ' #

!!!!

Subtrees executed with scout search 
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Principal Variation Search Pruning 

Scout search can improve pruning (modestly). Notice that most of the 
game-tree was processed using only zero-window searches… 

! " #

0 0 0 0 6 0008 0007 0 0 2 0 0 2 0 0 7 0 0 7 0 8 6 1 0 2 3 0 

! $ % ! " %

! $ %

!!

! " %

!!

! $ # ! & # ! & #

!!

! $ #

! & #

! ' #

!! ' #

!!!!

13 Leaves Pruned 

Subtrees executed with scout search 
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Transposition Table 

Chess programs often encounter the same 
positions repeatedly during their search. 
A transposition table stores results of 
previous searches in a hash table to avoid 
unnecessary work. 
• Call to update: search.c:195.
• Update function: search_globals.c:56.
• Used to order moves in search.c:105.

https://www.chessprogramming.org/Transposition_Table 
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Zobrist Hashing 

Zobrist hashing is a rolling hashing technique 
to convert a board position into a number of 
fixed length with uniform probability over all 
possible numbers (move_gen.c:112). 
The transposition table uses Zobrist hashing 
to index into it. 
Note: If you change the piece representation 
and want to use node counts to debug, you 
must recompute the zobrist hash from the old 
piece representation. 

https://www.chessprogramming.org/Zobrist_Hashing 
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Killer Move Table 

The killer move table stores moves so good 
that the opponent would prevent you from 
going down that path, so you can early exit 
and avoid exploring that subtree. 
The table is indexed by ply, because you tend 
to see the same moves at the same depth. 
• Table at search_globals.c:11.
• Set at search_common.c:378.
• Used in search_common.c:409.

https://www.chessprogramming.org/Killer_Heuristic 
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Best-Move Table 

The best move is stored at the root of a 
search and is the move that gained the 
maximum score. 
The best-move table is indexed by color, 
piece, square, and orientation. 
• Best-move history table at
search_globals:17.
• Updated at search_common:367.

https://www.chessprogramming.org/Best_Move 
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Null-Move Pruning 

Null-move pruning first tries to reduce the 
search space by not moving and then doing a 
shallower search to see if the subtree can still 
cause a beta cutoff. 
If the tree can cause a beta cutoff even 
without a move, it is too good.  The opponent 
would not let us go there, and so the search 
does not bother to explore it. 
• Implemented at search_common.c:193.

https://www.chessprogramming.org/Enhanced_Forward_Pruning 
https://www.chessprogramming.org/Null_Move_Pruning 
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Futility Pruning 

Futility pruning only explores moves that have 
the potential to increase alpha. 
It calculates this possibility by adding a futility 
margin (the largest possible gain) to the 
evaluation of the current position. 
If the result does not exceed alpha, skip the 
search of this move. 
• Implemented at search_common.c:209.

https://www.chessprogramming.org/Futility_Pruning 
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Late-Move Reduction 

After ordering the moves from a position, the 
moves at the front of the list are more likely 
to cause a cutoff. 
Late-move reduction searches the first few (3 
or 4) moves to full depth and the remaining 
ones with less depth. 
• Implemented in scout search at
search_common.c:289.

https://www.chessprogramming.org/Late_Move_Reductions 
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Opening Book 

Opening books store positions at the 
beginning of the game. 
Idea: Precompute the best moves at the 
beginning of the game. 
They save time in searching and can store 
results to a higher depth. 
The [KM75] theorem implies it is cheaper to 
keep separate opening books for each side 
than one opening book for both. 

https://www.chessprogramming.org/Opening_Book 
© 2008–2018 by the MIT 6.172 Lecturers 
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Endgame Database 

An endgame database is a table for guiding a 
chess program through the endgame. 
For endgame positions, the distance from the 
end might be too far to search. With an 
endgame database, you can store who will win 
and how far you are from the end of the 
game. 
player/end_game.c is a great place to store an 
endgame database. 

https://www.chessprogramming.org/Endgame 
© 2008–2018 by the MIT 6.172 Lecturers 
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Chess Programming 

• The Chess Programming wiki
(https://www.chessprogramming.org) is
an invaluable resource for learning about
the parts of a chess-playing program.

https://www.chessprogramming.org 
© 2008–2018 by the MIT 6.172 Lecturers 
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General Guidelines 

• Test often! It is easy to make a mistake
with your optimizations that does not
appear when you just search to fixed
depth.

• Testing methodology
• WebGUI
• Java Autotester
• Cloud Autotester
• Node counts
• Function comparison testing
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Optimization Tips 

• Start with optimizations that do not affect
the search (e.g. modifying the board
representation).

• Improve the existing heuristics before
trying to come up with your own.

• There are plenty of serial optimizations
that you can make before thinking about
parallelization.
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