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What are Spreadsheets and Big Tables?
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« Spreadsheets are the most commonly used analytical structure on Earth
(100M users/day?)

 Big Tables (Google, Amazon, Facebook, ...
the world (Exabytes?)

- Simultaneous diverse data: strings, dates, integers, reals,
 Simultaneous diverse uses: matrices, functions, hash tables, databases,

) store most of the analyzed data in

* No formal mathematical basis; Zero papers in AMA or SIAM

D4M-3 LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



Goal: Signal Processing on
@ Graph

s/Strings/Spreadsheets/Tables/ ...

Create a formal basis for working with these data structures based on
an Algebra of Associative Arrays

Better Algorithms

— Can create algorithms by applying standard mathematical tools (linear
algebra and detection theory)

Faster Implementation

— Associative array software libraries allow these algorithms to be
implemented with ~50x less effort

Good for managers, too

— Much simpler than Microsoft Excel; formally correct
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@ Multi-Dimensional Associative Arrays

* Extends associative arrays to 2D and mixed data types
A('alice ','bob ') = 'cited '
or A('alice ','/bob ') =47.0

* Key innovation: 2D is 1-to-1 with triple store
(‘'alice ','bob ','cited )

or (‘alice ','bob ',47.0)
O
2 cited
alice e o alice bob
(] (]
®
(] (]
®
®
® 0O
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]@[ Composable Associative Arrays

Key innovation: mathematical closure

— All associative array operations return associative arrays
Enables composable mathematical operations
A+B A-B A&B AB A'B
Enables composable query operations via array indexing
A('alice bob';:) A('alice’',:)) A(‘al*'})
A('alice : bob ")) A(1:2,) A==47.0

Simple to implement in a library (~2000 lines) in programming
environments with: 15t class support of 2D arrays, operator
overloading, sparse linear algebra

Complex queries with ~50x less effort than Java/SQL
Naturally leads to high performance parallel implementation
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@ Universal “Exploded” Schema

Triple Store Table: Ttranspose

Input Data 2001- | 2001- | 2001-
Time src_ip | domain | dest_ip 01-01 | 01-02 | 01-03
2001-01-01 a a src_ip/a 1
2001-01-02 b b src_ip/b 1
2001-01-03 c c domain/b 1
domain/c 1
dest_ip/a 1
dest_ip/c 1

src_ip/a | src_ip/b | domain/b | domain/c | dest_ip/a | dest_ip/c
2001-01-01 1 1
2001-01-02 1 1
2001-01-03 1 1

Triple Store Table: T

Key Innovations
* Handles all data into a single table representation
* Transpose pairs allows quick look up of either row or column
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@ Associative Array Definitions

* Keys and values are from the infinite strict totally ordered set $

* Associative array A(k) : $¢ — S, k=(k1,...,k%), is a partial function from d
keys (typically 2) to 1 value, where

Ak)=v, and O otherwise

* Binary operations on associative arrays A; = A, © A,
where ® = Uy, or Ny, have the properties
— If Ay(kj) = vy and Ay(k;) = v,, then As(ki) is
Vi Ug Vo =f(vy,vp)  or Vi Ny Vo = F(Vy,v)

— IfA (k) =vordandA,k) =Y orv, then A;(k)is
Vg D=V or VD=9

* High level usage dictated by these definitions
* Deeper algebraic properties set by the collision function f()
°* Frequent switching between “algebras” (how spreadsheets are used)
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@ Associative Array Values

* Value requirements

— Diverse types: integers, reals, strings, ...
— Sortable
— Set

* Let S be an infinite strict totally ordered set
— Total order is an implementation (not theoretical) requirement
— All values (and keys) will be drawn from this set

* Allowable operations for v,,v, € S
Vi<V, Vi=V, V>V,

* Special symbols: O, -, +w
v < +oo is always true (+o € )
v2-0 isalwaystrue (-0 e 8)
% is the empty set (J < )

* Above properties are consistent with strict totally ordered sets
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@ Collision Function f()

 Collision function f(v,,v,) can have
— two contexts (U N)
— three conditions (< = >)
— d + 5 possible outcomes (k v, v, @ - +) [or sets of these]

 Combinations result in an enormous number of functions (~10°°) and an
even greater number of associative array algebras (function pairs)

— Impressive level of functionality given minimal assumptions
* Focus on “nice” collision functions
— Keys are not used inside the function; results are single valued
— No tests on special symbols
f(vy,vy)
Vi<V, V4V, d -0 +o0
Vi=V,:V -0+

Vi >V, IV Vy, G -0 +o0

* Above properties are consistent with strict totally ordered sets
°* Note: @ is handled by U n; not passed into f()
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@ What About Concatenation?

* Concatenation of values (or keys) can be represented by using U or N as
collision function

— Requires generalizing values to sets v,,v, ¢ &

* Allowable operations forv,,v, c $

ViUV, VNV,
* Special symbols: g, S
vnd=0 annihilator (but never reached, so identify)
VUS =S8 annihilator
VNS =v identity
vu@d=v identity

* Possible operators: U, , U, N,

* Concatenating collision functions are very useful
* Can be handled by extending values to be sets
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@ Matrix Multiply Framework

o [
o
O ® O o
o o o -2
o o
o o
o
Al X Alx

« Graphs can be represented as a sparse matrices
— Multiply by adjacency matrix - step to neighbor vertices
— Work-efficient implementation from sparse data structures
» Graph algorithms reduce to products on semi-rings: A; =A; .0 A,
— ® : associative, distributes over ®
— @ : associative, commutative
— Examples: +.* min.+ or.and
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@ Theory Questions

* Associative arrays can be constructed from a few definitions
e Similar to linear algebra, but applicable to a wider range of data

* Key questions
— Which linear algebra properties do apply to associative arrays (intuitive)

— Which linear algebra properties do not apply to associative arrays
(watch out)

— Which associative array properties do not apply to linear algebra (new)

Associative
Arrays

intuitive watch out
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@ Outline

* [Introduction
* Definitions

» * Group Theory
— Binary operators

— Commutative monoids
— Semirings
— Feld

* Vector Space
* Linear Algebra

e Summary
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Operators Roadmap
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- Begin with a few definitions
 Expand into many operators; reduce to well behaved
« Expand into many operator pairs; reduce to well behaved
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& Including Concatenation
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* Including concatenation operators expands semirings
 Doesn’t expand vector semi-space
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]@[ Associative and Commutative Operators

Associative

et - Vi®V,) @V, =V, D(V, DV
2 e V1 Vv V1 ( 1® 2)® 3 1 ( 2 3)
3 Upax v, v vV, o
4 N Vs v V, » 18 associative operators
41 Ui vy v V2 — Semigroups
42 Nrmin Vv, \ Vv, G o
43 U v, y v, — Groups w/o inverses
44 Nright Vv, Y v,
86y 2 v 7  Commutative
96 Ny %) %] %) _
127 U, o v . V, DV, =V, DV,
128 m_OO’S =00 \' =00
147 o, -0 -0 -0 * 14 associative & commutative
148 ~00 ~00 -00 operators
169 U4 o0 \ oo — Removes left and right
170 N5 +00 Vv +00 : :
199 U, o o o — Abelian Semlgroups.
200 A o oo | ches — Abelian Groups w/o inverses
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@ Distributive Operator Pairs

* 14 x 14 = 196 Pairs of Abelian Semigroup operators

* Distributive
* 74 distributive operator pairs

— Semirings

— Rings without inverses and without identity elements

* 1/3 of possible operator pairs are semirings
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Distributive Operator Pairs with
Annihilators (0) and Identities (1)

@ identity: v, ®©0=v, 0=0, -0, +©
® identity: vV, ®1=v, 1=0, -0, +0
® annihilator: vi®0=0 0=0, -0, +0

12 Semirings with appropriate 0 1 set (4 with two)

16 total over six operators: U N Umning Ny oy U

max? max? min? min? -0 +00

— Felds? (Fields w/o inverses)

® = Uy, in 10/16 (U feels more like plus)

® = Ny, in 10/16 (~ feels more like multiply)

® = Ugyand ® =y, in 8/16

0 =0 in 6/8 (D feels more like zero, 0 > 1 might be a problem)

1/5 of semirings are Felds (Fields w/o inverses)
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@ Operator Pairs

D D D D

-00 +o0
D ‘Q-oo 3 +oo0

D [P*lw+0| D 3| D D
-0 &
g D @+ D D D D
+00 =00 D D D +0 @ D
D D

D D D D D D D D
D D D D D D
D D D D

J + D D D

D D D D
D D D D D D
D D D D
@ -0 D D D
D D D D

D=distributes; 0=Plus Identity/Multiply Annihilator; 1=Multiply Identity
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Concatenate Operators

201
202
203
204

DCDCI
3 2 C C

v, UV,
v, UV,
V, NV,
Vy NV,

+00 @

+00 -00

J -0

+00 -00

D

@ +o0

D

* Recall v, and v, are sets

 All operators are associative
and commutative

— 4 Abelian Semigroups

 All operator pairs distribute
— 16 Semirings
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Outline

Introduction
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Group Theory

Vector Space
— Vector Semispace

— Uniqueness
Linear Algebra

Summary
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]@[ Vector Space over a Feld

« Associative Array Vector ®
— All associative arrays are conformant (unlike matrices)
« Associative Array Scalar ®

— Scalar is a value applied directly to values; similar to constant
function; or a function that takes on keys of non-scalar
argument

» Vector Space @ requirements
— Commutes [Yes]; Associative [Yes]; O Identity element [Yes]
— Inverse [NO]

» Vector Space scalar ® requirements

— Commutes [Yes]; Associative [Yes]; Distributes over addition
[Yes]; 1 Identity element [Yes]

* All associative array operator pairs that yield Felds also result in
Vector Spaces wol/inverses (Vector Semispace?)
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@ Vector Semispace Properties

« Scalar @ identity annihilates under ® [Yes]

Subspace [Yes]

— Any linear combination of vectors taken from the subspace is in the subspace and
obeys the properties of a vector space

— Theorem: Intersection of any subspaces is a subspace?

Span [Yes+]

— Given a set of vectors A;, their span is all linear combinations of those vectors
(includes vectors of different lengths)

D (a; ® A)

Span = Subspace [Yes?]

— Given an arbitrary set of vectors, their span is a vector space?

Linear dependence [NO]

— There is a non-trivial linear combination of vectors equal to the @ identity; can’t do this
without additive inverse

— Need to redefine linear independence or all vectors are linearly independent; use
minimum vectors in a subspace definition?

— Likewise need to redefine basis as it depends upon linear dependence

* Key question: under what conditions does the result of a linear
combination of associative arrays uniquely determine the coefficients
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@ Unique Coefficient Conditions

« Consider a linear combinations of two associative array vectors
Az;=(a; ®A) D (a,®A,)

e Let®=0U,,, ® =N 0 =9, and 1 = -

* When are a, and a, uniquely determined by A, A, and A; ?

Canonical Vectors  Single valued Multi-valued
A,(kq) = =00 A(kiky) = (vq Vvy)
A(Ky) = -o0 Ay = Aq
Vi<V,
A,(kq) = +oo Ai(kiky) = (vv) A(kiky) = (vq vy)
Ay(ky) = +oo Ay = Ay Ax(Kykz) = (V3 V)
V<V,

* Consider specific cases to show existence of uniqueness
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Canonical Vectors

Aq(ky) = -0 Ayky) = -0 . Aq(ky) = +oo Ay(ky) = +oo xcb

* Canonical vectors exist that span or omit entire space

e a, a,

a;, a, unique " a, unique N a, unique [ a;. a, not unique
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Single Valued Vectors

A,(k,) = v X As(kikz) = (v V) Ay = A, s

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT



" a, unique
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@ Outline

* Introduction

* Definitions

* Group Theory
* Vector Space

mm)  Linear Algebra
— Transpose
— Special Matrices
— Matrix Multiply
— ldentity
— Inverses

— [Eigenvectors

* Summary
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@ Matrix Transpose

« Swap keys (rows and columns)
A(r,c)' = A(c,r)

* No change with even number of transposes

« Transpose distributes across @ and scalar ®

(a1 ®A) @ (a,®A))" =@, @A) @ (a,®AT)

e Similar to linear algebra
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Special Matrices

Submatrices [Yes]

Zero matrix [Yes?] (empty set)

Square matrix [Yes]

Diagonal matrix [Yes]

Upper/lower triangular [Yes]

Skew symmetric [No] (no @ inverse)
Hermitian [No] (no @ inverse)

Elementary row/column operations [Yes?]

— Swap both keys or values? No ® inverse.
— If both key and value swap, then equivalent to matrix multiply
Row/column equivalence [Yes?]

— If limit to swaps

Similar and different from linear algebra

Possible to construct these forms, but may not be applicable to
associative arrays that have fixed keys (i.e., functions over a keys)
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IE] Matrix Multiply

« Matrix multiply
A=A A=A ©QA,

Always conformant (can multiply any sizes)

Inner product formulation (computation)

As(r;,C)) = O (Aq(r,K) ® Ay(k,c) )

Outer product formulation (theory)
A(r;,C;) = Aq(r,k) ® Ay(k,c))
Az = @ A

* Different from linear algebra
* Associative arrays have no conformance requirements
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& Matrix Multiply Examples

* 1x2 Row matrix: A, (rk k) = v,
« 2x1 Column matrix: A, (K, ks,C) =V,
« Example 1: 1x1 Matrix: As(rc)=A A, = [See Table]

« Example 2: 2x2 Matrix (r£c): As(k Ky, Ky k3) = A, Ay = [See Table]
« Example 3: 2x2 Matrix (r=c): Aj(k{K,, Ky Kk3) = A, Ay =1(vy,V,)

» Value of A; depends upon specifics of ® and ®

Bamplel &=uy  OTng  Eamplez ®=uy ©=ny
- RO [
B o 0 SRR o 0

)

* Wide range of behaviors possible given specific operator choices
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@ Identity

 Left Identity: |« = diag(Row(A)) = 1
* When does? leit A = A
 Right Identity: lignt = diag(Col(A)) = 1
* When does? A light = A

Generally possible when
D = Uy ® =y,

In some circumstances
I=I|eﬂ€r)lright and AI=A=1A

e Similar to linear algebra for a limited set of ® and ®
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@ Inverses

* Left Inverse: AAT=1 4

- Right Inverse: ATA = i

* Is it possible to construct matrix inverses with no @ inverse and
no ® inverse

« Generally, no. Exception
— A'is a column/row vector
— D= Uy, @ =Ny
— Lighuiert 1S 1x1 equal to “local” 1 (i.e., 1 wrt to A)

* Different from linear algebra
* Inverses generally do not appear in associative arrays
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@ Eigenvectors (simple case)

Let ® = Uy, ® =y

Let A, A_, A, be NxN and have 1 element per row and column
A(r,r) =V, Acri,c) =€ A(C,C) =V,

» Eigenvector equation
AA, = A A =A,,

e

« where: A_,(r,c) = f(v,e,)

* Eigenvector equation satisfied in a simple case
* Row and column keys must match
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@ Pseudoinverse (simple case)

. Let69=ug,®=mf

Let A, A* be NxN (or N.xN_?) and have 1 element per row and column

A(r;,C) =V, A*(c,n) = v*

Pseudoinverse requires
A=AA"A
A=A"A A
(AA)T = AA*
(AAHT = AA*

* where: f(v,,v;") =V,

* Pseudoinverse equation satisfied in a simple case
° Row and column keys can be different
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Future Work: Got Theorems?

Spanning theorems: when is a span a vector space?
Linear dependence: adding a vector doesn’t change span?
Identity Array: when do left/right identity exist?
Inverse: why doesn’t it exist?

Determinant: existance?

Pseudoinverse: existence? How to compute?

Linear transforms: existance?

Norms or inner product space

Compressive sensing requirements

Eigenvectors

Convolution (with next operator)

Complementary matrices

For which ®, ®, 0/1 do these apply
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@ Summary

« Algebra of Associative Arrays provides the mathematics for
representing and operating on Spreadsheets and Big Tables

« Small number of assumptions yields a rich mathematical
environment

* Much of linear algebra is available without @ inverse and ®
inverse
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@ Example Code & Assignment

« Example Code
— ddm_api/examples/1Intro/3GroupTheory

« Assignment 2

— Define, in words, a list of operations that make “sense”
for your associative arrays in Assignment 1

— Explain your reasoning
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@ Relational Model High Level Comparison

Relational Database

Associative Arrays

Fill Dense Sparse
Columns Static Dynamic

Data Typed Untyped
#Rows Unlimited Unlimited
#Columns Small Unlimited
Dimensions 2 different N same

Main Operation | Join Linear Algebra

Relational algebra (Codd 1970) is the de facto theory of databases

The design goal of relational algebra and associative arrays algebra
are fundamentally different

Result in a fundamental differences in the theory
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