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Source: Sweeney & Najafian

Courtesy of Chris Sweeney and Maryam Najafian. Used with permission.
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Why Natural Language Processing?

. NLP is used in multiple domains (education, employment, social media, marketing).
- Many sources of unintended demographic bias in NLP pipeline.

. Data is widely available.

Source: Sweeney & Najafian

Courtesy of Chris Sweeney and Maryam Najafian. Used with permission.
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What is Unintended Demographic Bias

 Unintended: The bias is an adverse side effect, not deliberately

learned

« Demographic: The bias is some form of inequality between

demographic groups

 Bias: Artifact of the NLP pipeline that causes unfairness
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Types of Unintended Demographic Bias

« Sentiment Bias: Artifact of the ML pipeline that causes

unfairness in sentiment analysis algorithms

 Toxicity Bias: Artifact of the ML pipeline that causes

unfairness in toxicity predictions algorithms
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Types of Unintended Demographic Bias

Unfair toxicity classification example

Toxicity Classifier Unfair Decisions
Sentence 1.
) ) Non-Toxic
“ am American”
Sentence 2:
) —) ToxIC

“I am Mexican”

Source: Sweeney & Najafian

Courtesy of Chris Sweeney and Maryam Najafian. Used with permission.
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Unintended Demographic Bias vs Unfairness
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Source: Sweeney & Najafian

Courtesy of Chris Sweeney and Maryam Najafian. Used with permission.
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Research Summary

e Measuring Unintended Demographic Bias in word embeddings
« Using adversarial learning to mitigate word embedding bias

« PCA and Kernel methods to mitigate unintended bias
 Regression terms to mitigate unintended bias

 Evaluate methods against state-of-the-art bias mitigation methods

on real NLP systems
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Part 1:

Measuring Word Embedding Bias
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Measuring Word Embedding Bias
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Image courtesy of Tensorflow/Google. Used under CC BY.
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https://web.archive.org/web/20170131084922/https://www.tensorflow.org/tutorials/word2vec/

How to Measure Sentiment Bias in Word
Embeddings?

Source: Sweeney & Najafian
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Relative Negative Sentiment Bias (RNSB)

Source: Sweeney & Najafian

Courtesy of Chris Sweeney and Maryam Najafian. Used with permission.
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Part 2:

Mitigating Word Embedding Bias
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Using Adversarial Learning to Debias Word
Embeddings

Negative Sentiment Positive Sentiment
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Source: Sweeney & Najafian

Courtesy of Chris Sweeney and Maryam Najafian. Used with permission.
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Using Adversarial Learning to Debias Word
Embeddings

Predictor Adversary

: | . % 2\ Controls an adversary’s ability to predict the
- - Weight -
y We:f\’,hts y e\',ga > < La(Z ’ < ) projection of protected attributes onto the
{ { directional sentiment vector.
Lp(y, Y ) La( Z, z) Lp(y, y ) Controls word vector distortion

Source: Sweeney & Najafian

Courtesy of Chris Sweeney and Maryam Najafian. Used with permission.
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Testing in Real World NLP Systems
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Source: Sweeney & Najafian

Compare Fairness

Courtesy of Chris Sweeney and Maryam Najafian. Used with permission.
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How to Measure Fairness in a Downstream
Classifier

Template Dataset

Kiritchenko, S., & Mohammad, S. M. (2018). Examining gender and race bias in two hundred sentiment analysis systems. arXiv
preprint arXiv:1805.04508.

© Kiritchenko and Mohammad. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/
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https://ocw.mit.edu/help/faq-fair-use/
https://arxiv.org/abs/1805.04508

Template Dataset

How to Measure Fairness in a Downstream
Classifier

Template Examples Label Tt‘;m{‘ : gg’;i; %Vlegj/“
. atneis . .
I am <IDENTITY > | Non-ToxiC || queer 030% | 0.06%
I am a <IDENTITY> person, ask me anything | Non-Toxic || gay 3% | 0.50%
. . X . transgender | 0.04% | 0.02%
<IDENTITY> people are just like everyone | Non-Toxic || 6 = o6, | 004
else homosexual | 0.80% | 0.20%
[ hate all <IDENTITY> Toxic feminist 0.05% | 0.05%
7 IDENTITY> 47 hat Toxi black 0.70% | 0.60%
am a <IL person an ate your | Toxic okt 0.90% | 070%
guts and think you suck heterosexual | 0.02% | 0.03%
- : islam 0.10% | 0.08%
<IQENT ITY> people are gross and universally | Toxic o oo | Bcm
terrible bisexual 0.01% | 0.03%

Dixon, L., Li, J., Sorensen, J., Thain, N., & Vasserman, L. (2018, December). Measuring and mitigating unintended bias in text
classification. In Proceedings of the 2018 AAAI/ACM Conference on Al, Ethics, and Society (pp. 67-73). ACM.

© Dixon et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/
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Results on a Real-World Toxicity Classifier
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Source: Sweeney & Najafian

Courtesy of Chris Sweeney and Maryam Najafian. Used with permission.
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Comparisons to the State-of-the-Art Debiasing
Techniques

Source: Sweeney & Najafian
Courtesy of Chris Sween
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Key Takeaways

. There is no silver bullet (various applications, various types of bias)
. Bilas mitigation at all stages of the ML pipeline is essential

. Cannot all be solved in academia
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Unintended Bias

Source: Sweeney & Najafian

Courtesy of Chris Sweeney and Maryam Najafian. Used with permission.
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Thank you

Audace Nakeshimana
Undergraduate Student and Researcher, MIT audace@mit.edu
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