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Visual Memory Experiments

Phillip Isola

Figure removed due to copyright restrictions. Please see the video.
Source: Isola, Phillip, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. "What makes an image memorable?"
In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 145-152. IEEE, 2011.



Large difference in image memorability
& high consistency between observers’ groups

Figure removed due to copyright restrictions. Please see the video.
Source: Isola, Phillip, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. "What makes an image memorable?"
In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 145-152. IEEE, 2011.

Isola et al (2011). IEEE CVPR
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Is memorability consistent across different

s observers? Yes
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Consistent

Average %0 memorability
Probability of correctly detecting a repeat

40% p=0.75

200 600 1000 1400 1800 2200
Image rank N, according to group 1

chance level rank calculated by randomly ordering the images on the x-axis ~ 80 scores per image 7



Subjective judgments do not predict
image memorabillity

Figure removed due to copyright restrictions. Please see the video.

Source: Isola, Phillip, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. "What makes an image memorable?"
In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 145-152. IEEE, 2011.



Image memorability is distinct from
iImage aesthetic

Figure removed due to copyright restrictions. Please see the video.

Source: Isola, Phillip, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. "What makes an image memorable?"
In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 145-152. IEEE, 2011.



Is memorability stable across time? Yes

Figure removed due to copyright restrictions. Please see the video.

Source: Isola, Phillip, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. "What makes an image memorable?"
In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 145-152. IEEE, 2011.
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When do memorability differences arise?

At stage of encoding: This suggests some images (features) are encoded in less
sufficient detail than others

Figure removed due to copyright restrictions. Please see the video.

Source: Isola, Phillip, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. "What makes an image memorable?"
In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 145-152. IEEE, 2011.
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Courtesy of The American Psychological Association. Used with permission.
Source: Bainbridge, Wilma A., Phillip Isola, and Aude Oliva."The intrinsic memorability of
face photographs." Journal of Experimental Psychology: General 142, no. 4 (2013): 1323.

Face dataset 10K: faces selection follows the distribution of the US census. Available on the web

Bainbridge, Isola, Oliva, (2013). J. Exp. Psychology: General. 12



Large difference in face memorability
& high consistency between observers’ groups
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Source: Bainbridge, Wilma A., Phillip Isola, and Aude Oliva. "The intrinsic memorability of face

photographs." Journal of Experimental Psychology: General 142, no. 4 (2013): 1323.

Bainbridge, Isola, Oliva, (2013). J. Exp. Psychology: General.
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Mahowald, Isola, Fedorenko, Oliva, Gibson (submitted, 2015).
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Memorable vs. Forgettable words
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Information-theoretic norm (number of synonyms, number of meanings)
predict word memorability See Konkle, et al (2011), JEP:General

Mahowald, Isola, Fedorenko, Oliva, Gibson (submitted, 2015). 15
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Neural framework of memorability
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Equalized Memorable & Forgettable Groups
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11
180 memorable scenes 180 forgettable scenes
90 indoor, 90 outdoor (38 landscapes) 90 indoor, 90 outdoor (38 landscapes)
HIT : 0.97 (above 25% of HR) - FA: 0.10 HIT : 0.69 (below 25% of HR) - FA: 0.10
Color (RGB, Lab), spectral frequency Color (RGB, Lab), spectral frequency
Attractiveness
Emotion
77 Kindness
Friendliness
Happiness
Introversion
- 1 Confidence
180 memorable faces 180 forgettable faces
90 women, 90 men 90 women, 90 men
HIT : 0.72 (above 25% of HR) - FA: 0.11 HIT : 0.32 (below 25% of HR) - FA: 0.11

Race, age, type of emotion, spectral frequency Race, age, type of emotion, spectral frequeng:sy



Multi-variate Pattern Analysis
Memorable vs. Forgettable

Hippocampus
(Posterior)

Parahippocampal
Cortex

Perlrhlnal

A role for the hippocampus in higher-order
statistical perception

MVPA Searchlight preliminary results (3x3x3 cubic voxel grid) Bainbridge, Dilks, Oliva (in preparation)
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Large scale visual memorability
60,000 photographs with memorability scores

Aditya Khosla

Figure removed due to copyright restrictions.

Source: Khosla, Aditya, Akhil S. Raju, Antonio Torralba, and Aude Oliva."Understanding and
predicting image memorability at a large scale." In Proceedings of the IEEE International
Conference on Computer Vision, pp. 2390-2398. 2015.

Most memorable Less memorable

http://memorability.csail.mit.edu/
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Most memorable Less memorable

Figure removed due to copyright restrictions.

Source: Khosla, Aditya, Akhil S. Raju, Antonio Torralba, and Aude Oliva."Understanding and
predicting image memorability at a large scale." In Proceedings of the IEEE International
Conference on Computer Vision, pp. 2390-2398. 2015.
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You need to recognize to
remember
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Predictions:

o Type of environment: outdoor

Scene Understanding: *
Context and Objects

© Dorothy Hays. All rights reserved. This content is excluded from our Creative Common
license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.



https://ocw.mit.edu/help/faq-fair-use/

The evolution of scene and object centered databases
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James Hays, Krista A. Ehinger, Aude Oliva, and Antonio Torralba."Sun database:

Large-scale scene recognition from abbey to zoo." In Computer vision and pattern recognition (CVPR), 2010

Source: Xiao, Jianxiong,
IEEE conference on, pp. 3485-3492. IEEE, 2010.
Ehinger et al (2011)

Xiao et al (2010), CVPR,
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Courtesy of Zhou, Bolei, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva.
"Learning deep features for scene recognition using places database." In Advances in neural
information processing systems, pp. 487-495. 2014.
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Web demo: places.csail.mit.edu

Predictions:
Predictions: Predictions:

Predictions:

* Type of environment: indoor

« Type of environment: outdoor = SUBAMIC CMegOTIES: « Type of environment: outdoor
conference_room:0.29,

« Type of environment: indoor
« Semantic categories: restaurant:0.27,

. s . « Semantic categories: patio:0.38,
coffee_shop:0.23, cafeteria:0.21, 8 Seman"c (.:ategon_es' i dining_room:0.27, restaurant_patio:0.35,
food_court:0.12, restaurant_patio:0.09 parking_lot:0.46, driveway:0.44, banquet_hall:0.08, classroom:0.06, restaurant:0.06.

© CSAIL. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Web demo: places.csail.mit.edu

Take/Choose a photo

Predictions:
Predictions:  Type of environment: indoor

o Type of environment: outdoor B Semaqtlf: categories: restéurant:0.16.

» Semantic categories: harbor:0.50, cafeteria:0.15, coffee_shop:0.14,
dock:0.11, boat_deck:0.06, food_court:0.12, bar:0.09

¢ SUN scene attributes: natura"ight! B SUN scene attributes: enC|Osedarea.
openarea, man-made, sailingboating, far- nohorizon, electricindoorlighting, man-
awayhorizon, transportingthingsorpeople, made, wood(notpartofatree), socializing,
clouds, swimming, metal, stillwater eating, working, glossy, congregating

© CSAIL. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see https://ocw.mit.edu/help/faqg-fair-use/.
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More semantically meanlngful
Courtesy of Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva and Antonio Torralb

Zhou, Khosla, Lapedriza, Oliva, Torralba (2015), ICLR
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Spatial maps of correlations
between human brain and model layers

AlexNet
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© Radoslaw Cichy, Aditya Khosla, Dimitrios Pantazis, Antonio Torralba and Aude Oliva.
All rights reserved. This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/fag-fair-use/.
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Object detectors emerge inside the CNN
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Courtesy of Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva and Antonio Torralba. Used with permission.

Scenes
145) cementery

218) pitch
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MemNet
CNN for Predicting Image Memorability

IMAGENET placesees
input output

HybridNet from Zhou et al, NIPS 2014 (places.csail.mit.edu)
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Training MemNet

output
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Training MemNet

-—_— Backpropagation
Fine-tuning

Khosla, Raju, Torralba and Oliva (under review). Understanding and Predicting Image
Memorability at a Large Scale. http://memorability.csail.mit.edu/.
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© Source Unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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Visualizing Neurons RF of Memorability

Figure removed due to copyright restrictions. Please see the video.

Source: Khosla, Aditya, Akhil S. Raju, Antonio Torralba, and Aude Oliva."Understanding
and predicting image memorability at a large scale." In Proceedings of the IEEE
International Conference on Computer Vision, pp. 2390-2398. 2015.
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Cognitive Saliency: Which regions are
memorable?
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Modeling Human Memory
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© Source Unknown. All rights reserved. This content is excluded from our Creative Commons
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