The child as scientist

Learning as “theory building”, not “data analysis”.
Knowledge grows through hypothesis- and explanation-driven
interpretations of sparse data, causal learning, learning theories,
learning compositional abstractions, learning to learn,

exploratory learning, social learning.
[Carey, Karmiloff-Smith, Gopnik, Schulz, Feigenson...]
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Probabilistic programs for model building
(“program-learning” programs)
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f physics
World state (t)=> World state (t+1)..

graphics
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Learning and generalization for
object concepts
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Learning and generalization for
object concepts
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The omniglot dataset
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The omniglot dataset

Angelic Alphabet of the Magi

ULOG Futurama
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One-shot learning
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A multitude of tasks
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Bayesian Program Learning
(Lake, Salakhutdinov, Tenenbaum, NIPS 2013; in prep)

Primitives [e.g. basic movements or
actions, shape elements (1D curvelets
2D patches, 3D geons), ...]

Sub-strokes f) O
Strokes ‘ 3 f ! \
\ /elation l \ /
Character oo Ny
fconnected at end|
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Bayesian PI’OQ! procedure GENERATET YPE

(Lake, Salakhutdinov, k< P(k)  Sample number of parts
fori=1.. kdo

z; < P(z;)  Sample sub-parts
for j=1.. n;do

\ Tij < P(Tij|25)
\D end for

Ri < P(R”Zl, .. Z,,'__1)
/ l end for Sample part relations

Sub-strokes 7 ) 4 v ik R, 2z}

\ ]D return @GENERATETOKEN (1))

l end procedure Handle to stochastic program

Transform sub-parts

Strokes 3 S \
[elation \ /
N
fconnected at end|

Character 3
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Learning to generate types

(“generative model for generative models”)
HBPL (and other models) were trained on 30 “background alphabets™ that weren’t seen again.

oo number of strokes relations (stroke attachment)
' ' ' independent (70%)
4000
000 Stroke |  Stroke 2  Stroke 3 Stroke =4

N o i I T T e start (4%) end (6%) along (19%)
Q\\ .-t' ) ";_, . ! $omineg

R token-level transformations

_ #(™) + GENERATETOKEN(1))

1000 primitives and their bigrams.
transformations: control point
variability and scale

e GGaussian noise on continuos variables
» global object scale/translation

» adaptive image blur

* adaptive pixel noise
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Inferring a program from a single example

library of primitives 6 latent variables

S )\ | [ image

Discrete approximation to
/ l posterior in the form of several

parses @;.

Sub-strokesf) >
\/

Strokes 3

j P(6|I) S w

such that

Intuition:
Fit strokes to the observed pixels
as closely as possible, while also:

Character

inference

* choosing high-probability sub-strokes and

maintaining their shape

* choosing stroke start positions that match

dataset statistics and abide by stroke relations
© AAAS. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum. "Human-level
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Classifying with probabilistic programs
Class 1 Class 2

Which class is image 7 in?

~

&)

log P(I|class 1) ~ —758 log P(I|class 2) ~ —1880
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learning through probabilistic program induction." Science 350, no. 6266 (2015): 1332-1338.
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One-shot classification

B People

Classification error rate

35|
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Bayesian Program Learning models

B erL

[ BPL Lesion (no learning-to-learn)
BPL Lesion {no compositionality)
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Deep Learning models
. Deep Siamese Convnet
B Deep Convnet

B Hierarchical Deep

Target character

Q

Click the image below that shows the same character.
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Source: Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum.
"Human-level concept learning through probabilistic program induction." Science

350, no. 6266 (2015): 1332-1338.
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Generating new examples
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Generating new examples
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Turing test: Can people tell the humans
from the machine?

100

B HBPL
I control (affine)

chance

“XIY”:

X out of Y judges

who were significantly
greater than chance

% correctly recognized
by human judges

two images two grids of 9 images
Judgment type
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Explaining the dynamics of
development? (w/ T. Ulilman, Spelke, others)

Habituation event New goal event New path event

9 months

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Sommerville, Jessica A., Amanda L. Woodward, and Amy Needham.
"Action experience alters 3-month-old infants' perception of others' actions."
Cognition 96, no. 1 (2005): B1-B11.

Observed Incompatible Compatible
behaviour outcome outcome

WAL ]
N

12 months

4
/S VS

© Elsevier. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Skerry, Amy E., and Elizabeth S. Spelke. "Preverbal infants identify emotional reactions
that are incongruent with goal outcomes." Cognition 130, no. 2 (2014): 204-216.

15 months

0 ml |

© AAAS. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Onishi, Kristine H., and Renée Baillargeon. "Do 15-month-old infants
understand false beliefs?" science 308, no. 5719 (2005): 255-258.
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ExXplaining the dynamics or

development? (w/ T. Ullman, Spelke, others)

9 months

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Sommerville, Jessica A., Amanda L. Woodward, and Amy Needham.
"Action experience alters 3-month-old infants' perception of others' actions."
Cognition 96, no. 1 (2005): B1-B11.

Capture different knowledge
stages with a sequence of
probabilistic programs?

Explain the trajectory of stages
as rational statistical inference
in the space of programs?

15 months _}a\ | at

Violation detected
at each stage

3 months
Initial C t: .
Clz)lntlact/Nc? f:lc()::tgct
5 months
Variable;
Type of contact

|

6.5 months

Variable:
Amount of contact

12.5 months

§e'8

; Tae

Variable: i
Shape of the box R e

Courtesy of Elsevier, Inc., http://www.sciencedirect.com .
Used with permission.

Source: Baillargeon, Renée."Infants' understanding of the
physical world." Journal of the Neurological Sciences 143,

no. 1-2 (1996): 199. 22
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Learning physics from dynamic scenes

(Ullman, Stuhlmuller, Goodman, Tenenbaum, 2014; under review)

Unobserved properties:
(c.f. parameter learning)

e.g., mass, charge,
friction, elasticity,
resistance...

See the lecture video to
view these video clips

New laws:
(c.f. structure learning)

e.g., presence of forces
and their shape,
existence of hidden
objects, kinds of
substances ...

23



Metatheory
Objects

Inertial
dynamics

Theories

Different forces
Coupling
Global

Different masses

Different frictions

Events

()

F=mxa
(XoVorto)

(x1,vy,tq)
A

N

(define (construct-particle size position velocity mass)
(list size position velocity mass))

(define (construct-barrier size elasticity position)
(list size elasticity position))

(define (next-position objects forces dt)

(let ((masses (get-mass objects))
(positionO (get-position objects))
(velocityO (get-velocity objects))

(a (/ forces masses)))
(numerical-integration position0O velocity0O a dt)))

(define (attraction objectl object2)
(let ((r (euclidian-dist objects))
(ml (get-mass objectl))
(m2 (get-mass object2)))
(/ (* C ml m2) (power r 2))))

(define (heavy-mass 9.0))

(define (smooth-surface 0.0))

(define world-5 (create-world
(create-forces (collision rr-attract global-left))
(create-particles (draw-random-particles 3))
(create-friction (draw-friction-surfaces 1))))

© Proceeding of the National Academy of Sciences. All rights reserved.This
content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Ullman, Tomer, Andreas Stuhimiller, Noah Goodman, and Joshua
B. Tenenbaum. "Learning physics from dynamical scenes." In Proceedings
of the thirty-sixth annual conference of the cognitive science society. 2014.
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Comparing models and humans
Mass Friction

| | | | | | |

Pairwise forces Global forces

People

Model

© Proceeding of the National Academy of Sciences. All rights reserved.Thiscontent is excluded from our Creative
Commons license. For moreinformation, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Ullman, Tomer, Andreas Stuhlmtller, Noah Goodman, and JoshuaB. Tenenbaum. "Learning physics from
dynamical scenes." In Proceedings of the thirty-sixth annual conference of the cognitive science society. 2014.
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Learning the form of domain theories?

A really hard problem...
« What's the right hypothesis space?

 What's an effective algorithm for searching the
space of theories, as fast and as reliably and as
flexibly as we see in children’s learning?



Learning the form of domain theories?

Higher Probabilty 1. Theorv A 4. Probabilistically
/ accept proposal
x T~

Lower Probability y

o/2. Theory B

3. Compare current and
proposed theories

Input

Higher Energy/Error

4. New weights
Hidden

Output

Lower Energy/Error

2. Find gradient

3. Move along gradient

>

© Elsevier. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Ullman, Tomer D., Noah D. Goodman, and Joshua B. Tenenbaum. "Theory
learning as stochastic search in the language of thought." Cognitive Development 27,
no. 4 (2012): 455-480.
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Hierarchical Bayesian Framework

(Kemp & Tenenbaum, Psych Review, 2009)

F: form

S: structure

D: data

Tree
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© Psychological Reivew. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Kemp, Charles, and Joshua B. Tenenbaum. "Structured statistical models of

inductive reasoning." Psychological review 116, no. 1 (2009): 20.
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Hypothesis space of structural forms

Form

O O
OO

(Kemp & Tenenbaum, PNAS 2008)

Process Form Process
()

(O =
SO ~0 = —<2
Chain x Chain

Chain x Ring

Courtesy of National Academy of Sciences, U. S. A. Used with permission.

Source: Kemp, Charles, and Joshua B. Tenenbaum. "The discovery of structural

form." Proceedings of the National Academy of Sciences 105, no. 31 (2008):

10687-10692. Copyright © 2008 National Academy of Sciences, U.S.A. 29



Discovering the structural form of a domain
(Kemp & Tenenbaum, PNAS 2008; Psych Review, 2009)

Abstract
principles

tree: —o~ = ,-<2

Salmon

Trout  Aliigator

Eagle

Robin Penguin

Finch

Iguana

Ant
Chicken

Ostrich Dolphin

Seal

Cockroach

Butterfly

Bee
Dog

Cat

Lion

Tiger

Squirrel
Mouse

Courtesy of National Academy of Sciences,
U. S. A. Used with permission.

Source: Kemp, Charles, and Joshua B. Tenenbaum.
"The discovery of structural form." Proceedings of

the National Academy of Sciences 105, no. 31 (2008):
10687-10692. Copyright © 2008 National Academy of

Data Sciences, U.S.A.
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Development of structural forms
as more data are observed
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Courtesy of National Academy of Sciences, U. S. A. Used with permission.
Source: Kemp, Charles, and Joshua B. Tenenbaum. "The discovery of structural
form." Proceedings of the National Academy of Sciences 105, no. 31 (2008):

10687-10692. Copyright © 2008 National Academy of Sciences, U.S.A. 31



Conclusion

What makes us so smart?

1. How we start: Common-sense core theories of intuitive physics and
intuitive psychology.

2. How we grow: Learning as theory construction, revision and
refinement.

The tools of probabilistic programs and program induction are beginning
to let us reverse-engineer these capacities, with languages that are:
— Probabilistic.
— Generative.
— Causally structured

— Compositionally structured: flexible, fine-grained dependencies,
hierarchical, recursive, unbounded

We have to view the brain not simply as a pattern-recognition device, but as a
modeling engine, an explanation engine — and we have to understand how
these views work together.

Much promise but huge engineering and scientific challenges remain... full of
opportunities for bidirectional interactions between cognitive science,
neuroscience, developmental psychology, Al and machine learning.
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