

THE STATISTICAL SOMMELIER An Introduction to Linear Regression

15.071 – The Analytics Edge

Wine icon is in the public domain. Source: Wikimedia Commons.

Bordeaux Wine

Image removed due to copyright restrictions

- Large differences in price and quality between years, although wine is produced in a similar way
- Meant to be aged, so hard to tell if wine will be good when it is on the market
- Expert tasters predict which ones will be good
- Can analytics be used to come up with a different system for judging wine?

Predicting the Quality of Wine

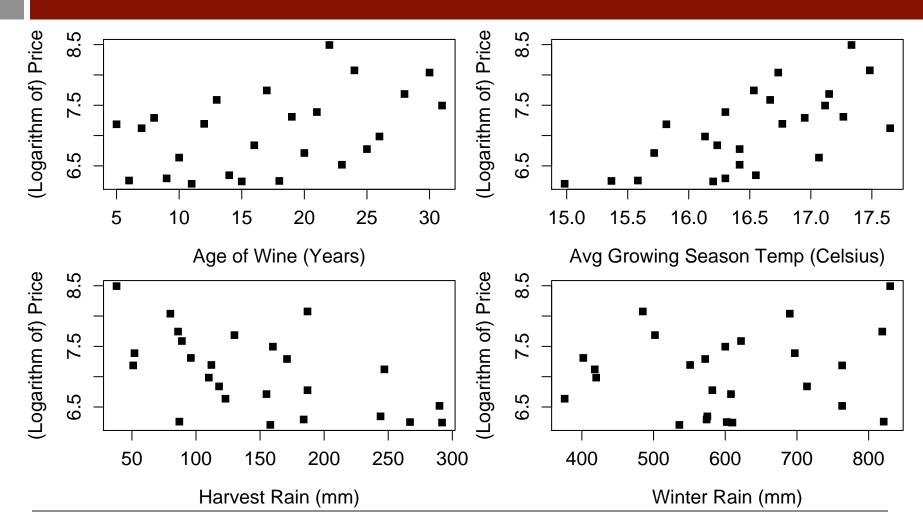
 March 1990 - Orley Ashenfelter, a Princeton economics professor, claims he can predict wine quality without tasting the wine

Image removed due to copyright restrictions

Building a Model

- Ashenfelter used a method called linear regression
 - Predicts an outcome variable, or *dependent variable*
 - Predicts using a set of *independent variables*
- Dependent variable: typical price in 1990-1991 wine auctions (approximates quality)
- Independent variables:
 - Age older wines are more expensive
 - Weather
 - Average Growing Season Temperature
 - Harvest Rain
 - Winter Rain

The Data (1952 – 1978)



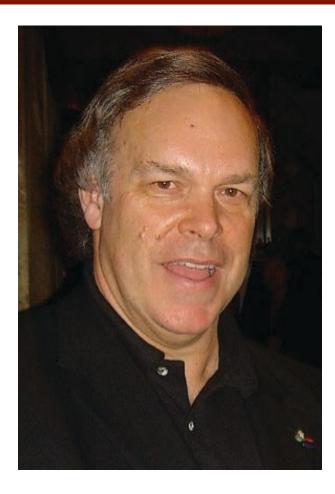
15.071x – The Statistical Sommelier: An Introduction to Linear Regression

The Expert's Reaction

Robert Parker, the world's most influential wine expert:

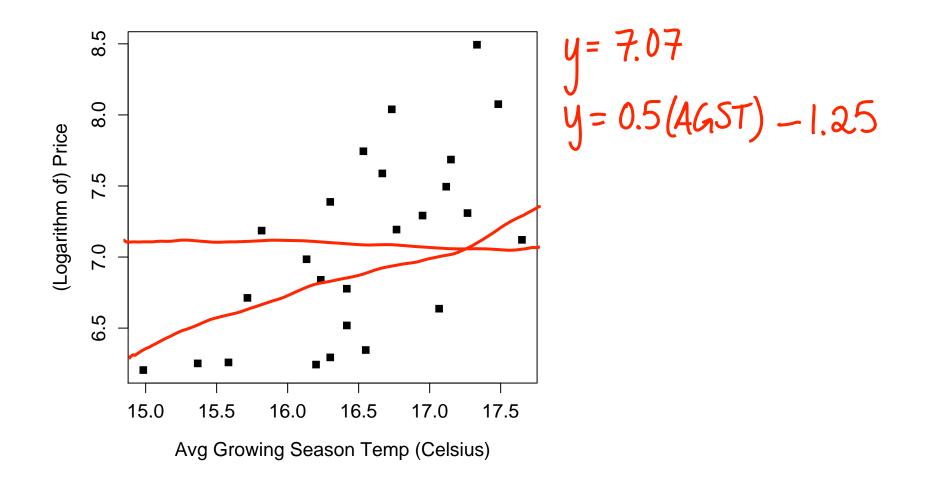
"Ashenfelter is an absolute total sham"

"rather like a movie critic who never goes to see the movie but tells you how good it is based on the actors and the director"



15.071x – The Statistical Sommelier: An Introduction to Linear Regression

One-Variable Linear Regression



15.071x – The Statistical Sommelier: An Introduction to Linear Regression

The Regression Model

• One-variable regression model

$$y^i = {}_0 + {}_1 x^i + \epsilon^i$$

 y^i = dependent variable (wine price) for the ith observation x^i = independent variable (temperature) for the ith observation ϵ^i = error term for the ith observation β_0 = intercept coefficient β_1 = regression coefficient for the independent variable

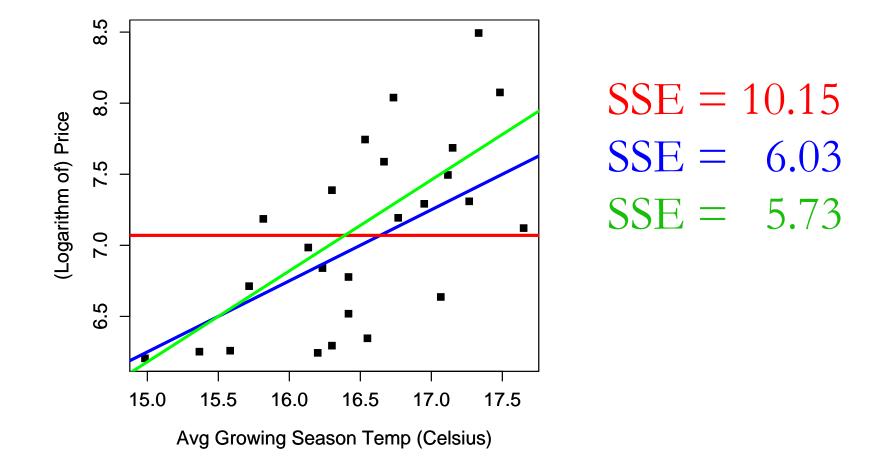
• The best model (choice of coefficients) has the smallest error terms

Selecting the Best Model



15.071x – The Statistical Sommelier: An Introduction to Linear Regression

Selecting the Best Model



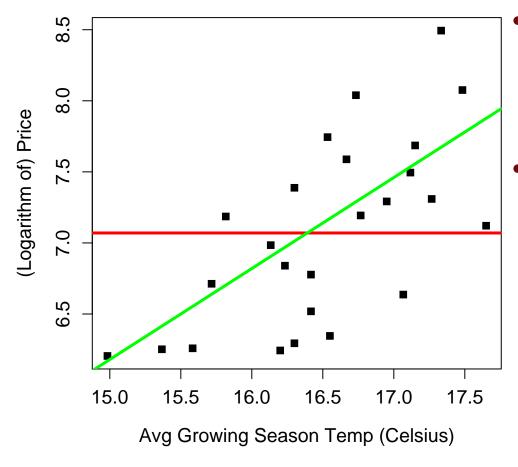
15.071x – The Statistical Sommelier: An Introduction to Linear Regression

Other Error Measures

- SSE can be hard to interpret
 - Depends on N
 - Units are hard to understand
- Root-Mean-Square Error (RMSE)

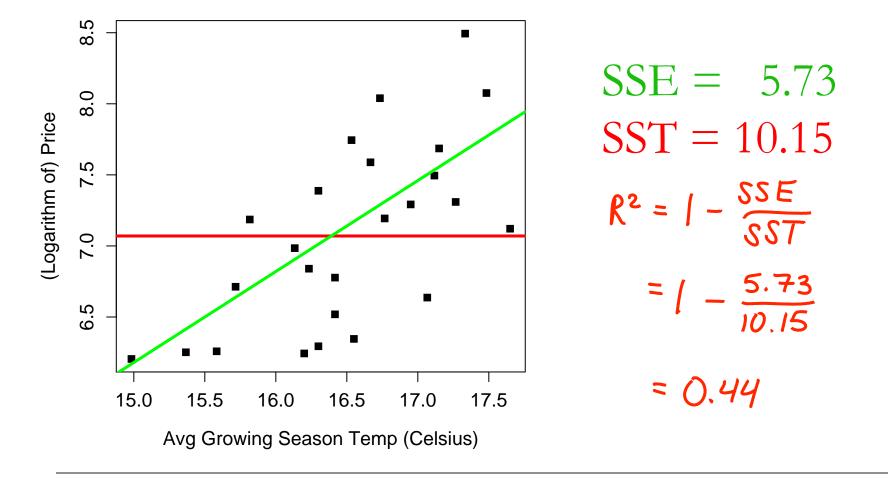
$$RMSE = \sqrt{\frac{SSE}{N}}$$

• Normalized by N, units of dependent variable



- Compares the best model to a "baseline" model
- The baseline model does not use any variables
 - Predicts same outcome (price) regardless of the independent variable (temperature)

15.071x – The Statistical Sommelier: An Introduction to Linear Regression



15.071x – The Statistical Sommelier: An Introduction to Linear Regression

Interpreting R²

$$R^{2} = 1 - \frac{SSE}{SST} \qquad \begin{array}{l} \mathbf{0} \leq \mathbf{SSE} \leq \mathbf{SST} \\ \mathbf{0} \leq \mathbf{SST} \end{array}$$

- R^2 captures value added from using a model
 - $R^2 = 0$ means no improvement over baseline
 - $R^2 = 1$ means a perfect predictive model
- Unitless and universally interpretable
 - Can still be hard to compare between problems
 - Good models for easy problems will have $R^2 \approx 1$
 - Good models for hard problems can still have $R^2 \approx 0$

Available Independent Variables

- So far, we have only used the Average Growing Season Temperature to predict wine prices
- Many different independent variables could be used
 - Average Growing Season Temperature
 - Harvest Rain
 - Winter Rain
 - Age of Wine (in 1990)
 - Population of France

Multiple Linear Regression

- Using each variable on its own:
 - $R^2 = 0.44$ using Average Growing Season Temperature
 - $R^2 = 0.32$ using Harvest Rain
 - $R^2 = 0.22$ using France Population
 - $R^2 = 0.20$ using Age
 - $R^2 = 0.02$ using Winter Rain
- Multiple linear regression allows us to use all of these variables to improve our predictive ability

The Regression Model

Multiple linear regression model with k variables

$$y^{i} = _{0} + _{1}x_{1}^{i} + _{2}x_{2}^{i} + \ldots + _{k}x_{k}^{i} + \epsilon^{i}$$

 y^{i} = dependent variable (wine price) for the ith observation $x_{i}^{i} = j^{th}$ independent variable for the ith observation ϵ^{i} = error term for the ith observation β_0 = intercept coefficient

 β_i = regression coefficient for the jth independent variable

Best model coefficients selected to minimize SSE

Adding Variables

Variables	R ²
Average Growing Season Temperature (AGST)	0.44
AGST, Harvest Rain	0.71
AGST, Harvest Rain, Age	0.79
AGST, Harvest Rain, Age, Winter Rain	0.83
AGST, Harvest Rain, Age, Winter Rain, Population	0.83

- Adding more variables can improve the model
- Diminishing returns as more variables are added

Selecting Variables

- Not all available variables should be used
 - Each new variable requires more data
 - Causes *overfitting:* high R² on data used to create model, but bad performance on unseen data
- We will see later how to appropriately choose variables to remove

Understanding the Model and Coefficients

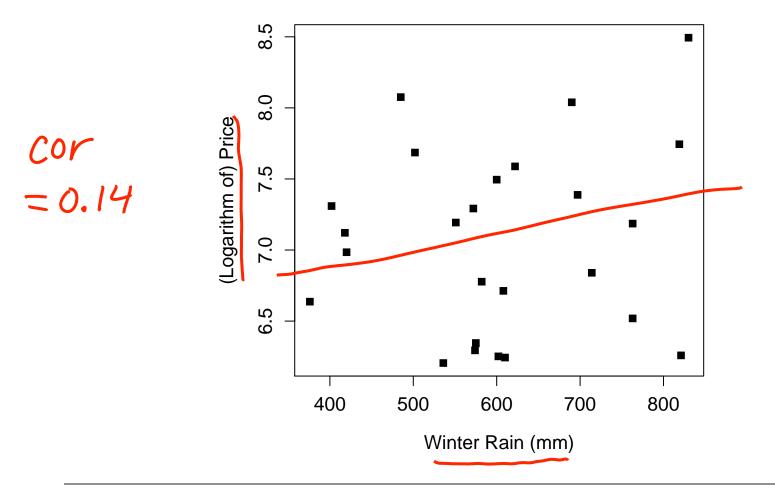
		<u>Estimate</u>					
		Std. Ernr					
	Coefficients:			J	\checkmark	1.	
		Estimate	Std. Error	t value	Pr(>ltl)	Y	
	(Intercept)	-4.504e-01	1.019e+01	-0.044	0.965202		
ſ	AvgGrowingSeasonTemp	6.012e-01	1.030e-01	5.836	1.27e-05	***	
	HarvestRain	-3.958e-03	8.751e-04	-4.523	0.000233	***	
	Age	5.847e-04	7.900e-02	0.007	0.994172		
	WinterRain	1.043e-03	5.310e-04	1.963	0.064416		
	FrancePopulation	-4.953e-05	1.667e-04	-0.297	0.769578		
\rightarrow	Signif. codes: 0 '**	**' 0.001 ''	**' 0.01 '*'	0.05 '.	' 0.1''	1	
		-	\sim	-		•	

Correlation

A measure of the linear relationship between variables

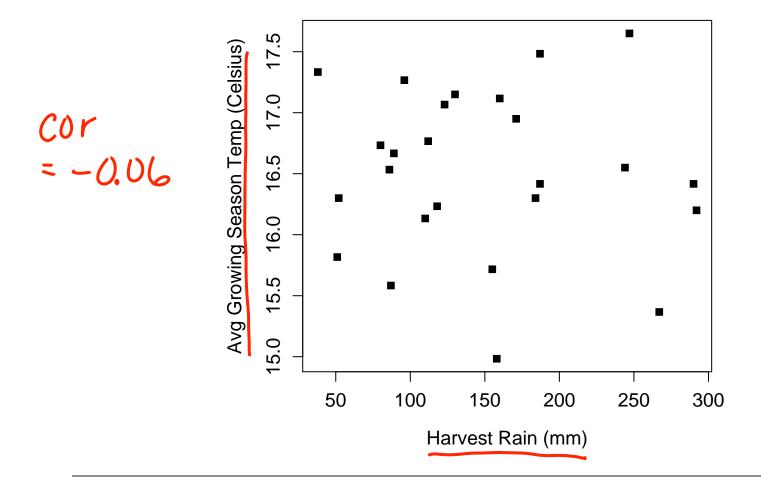
- \rightarrow +1 = perfect positive linear relationship
- $\longrightarrow 0 =$ no linear relationship
- \rightarrow -1 = perfect negative linear relationship

Examples of Correlation



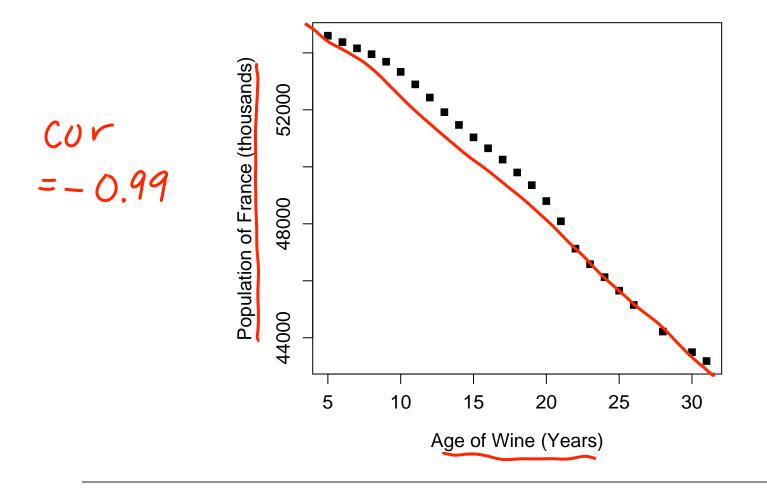
15.071x – The Statistical Sommelier: An Introduction to Linear Regression

Examples of Correlation



15.071x – The Statistical Sommelier: An Introduction to Linear Regression

Examples of Correlation



15.071x – The Statistical Sommelier: An Introduction to Linear Regression

Predictive Ability

- Our wine model had a value of $R^2 = 0.83$
- Tells us our accuracy on the data that we used to build the model **training**

test

- But how well does the model perform on new data?
- Bordeaux wine buyers profit from being able to predict the quality of a wine years before it matures

Out-of-Sample R²

	Variables	Model R ²		Test R ²	
	AGST		0.44	0.79	
	AGST, Harvest Rain		0.71	-0.08	Þ
	AGST, Harvest Rain, Age		0.79	0.53	
>	AGST, Harvest Rain, Age, Winter Rain		0.83	0.79	
	AGST, Harvest Rain, Age, Winter Rain, Population		0.83	0.76	

- Better model R^2 does not necessarily mean better test set R^2
- Need more data to be conclusive
- Out-of-sample R² can be negative!

The Results

- Parker:
 - 1986 is "very good to sometimes exceptional"
- Ashenfelter:
 - 1986 is mediocre
 - 1989 will be "the wine of the century" and 1990 will be even better!
- In wine auctions,
 - 1989 sold for more than twice the price of 1986
 - 1990 sold for even higher prices!
- Later, Ashenfelter predicted 2000 and 2003 would be great
- Parker has stated that "2000 is the greatest vintage Bordeaux has ever produced"

The Analytics Edge

- A linear regression model with only a few variables can predict wine prices well
- In many cases, outperforms wine experts' opinions
- A quantitative approach to a traditionally qualitative problem

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

15.071 Analytics Edge Spring 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.