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OK. Back to cavity QED, back to the fully quantized radiation field, back to vacuum
Rabi oscillation. Let me just recapitulate and sort of make the transition from this
intense discussion about homework to the intellectually stimulating discussion about

atoms and photons.

So in the semiclassical description of the electromagnetic field, photons can only be
emitted because we have a Hamiltonian with the semiclassical electric field. So if
you don't drive the system with an electric field, you cannot stimulate the emission
of photons. But we know this is not what happens. Photons are emitted into empty
space, photons are emitted into a vacuum. And for that we needed a quantized
description of the electromagnetic field. We did field quantization, and we have now

our quantized Hamiltonian.

And on Monday | started to discuss what is sort of the paradigmatic situation, the
paradigmatic example, for how you should think about the vacuum and how you
should think about emission of photons into the vacuum. And these are the vacuum
Rabi oscillation described by the Jaynes-Cummings model. So the situation which |
have in mind, or which you should have in mind, is an idealized situation, but it has
been realized experimentally. And some of those idealized experiments were

recognized with the Nobel Prize research of Haroche and Dave Wineland.

So the situation is we have an atom, but it only talks to one mode of the
electromagnetic field, and we make sure that the atom only talks to one mode of the
electromagnetic field not by eliminating other modes; they exist. | mean, an atom
can emit upwards and downwards. But we surround it with a cavity which has such
a small mode volume, it has such a small volume, that the single photon Rabi
frequency is huge, and therefore the emission into this one single mode dominates
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over the emission into all other modes. So this is a condition that the single photon

Rabi frequency has to be larger than gamma.

And, of course, we also have to make sure that the system is idealized so the loss
of photons because of losses in the mirror, or finite reflectivity in the mirror, also has
to be smaller. So that means for several Rabi periods we have a system which has
only two parts, a two-level atom and one single mode of the cavity. So that's the

system we have in mind, and we discussed the Hamiltonian.

We saw that the Hilbert space of the atom is excited in ground state, the Hilbert
space of the photons is spent by the [? flux ?] states, but what happens is-- so
there's an infinite number of states, because of the infinite number of states of the
photon field-- but what happens is the Hamiltonian couples only an excited state
with n photons to a ground state with n plus 1 photons. So the whole Hilbert space

is segmented now into just pairs of states labeled by the index n.

So after so much work, we are back to a two-level system. And here is our two-level
Hamiltonian. And, well, a two-level system does oscillations between the two levels.

Rabi oscillations, no surprise. And this is what | want to discuss now.

But the new feature is that these are really, well, these are now really two levels.
Each of them is the combined state of the atom and the quantized radiation field. So
now we have included in our two-level description the quantum state of the

electromagnetic field.

So first you should realize that this Hamiltonian is absolutely identical to spn 1/2 in
magnetic fields. And you can recognize by [? comparing ?] this Hamiltonian, this
matrix, to the matrices we discussed for spn 1/2 in the magnetic field, that this
corresponds to the situation where this spn 1/2 had a transverse field in the x
direction which caused a precession from spn up to spn down. And this x
component of the field corresponds now to the single photon Rabi frequency times

n plus 1. That's the off diagonal matrix element in this matrix.

The thing which we have to discuss, and | will focus later, is that it depends on n. So

2



for each pairs of state labeled by n, the photon number, we have a different off
diagonal matrix element. But let's discuss first the most important and simplest

case.

Let's assume we are on resonance, and we want to assume that we have a
vacuum. Then our Hamiltonian is simply this. And when we prepare the system in
an initial state, which is an excited state with no photon in the vacuum, then we'll
have oscillations to the ground state with one photon. These oscillations are exactly

the oscillations we saw on the spn 1/2 system.

We can just map the solution. I'm not really writing anything here. So what we obtain
is the famous vacuum Rabi oscillations. where the probability to be in the excited

state oscillates with the single photon Rabi frequency omega 1.

| think there's a little bit of an ambiguity in language. Is it the single photon Rabi
frequency? or is it the vacuum Rabi frequency? Because there's always the
question about plus minus one photon because we start in the excited state without
photon so you want to say it's a vacuum Rabi frequency. But then you have the
ground state with one photon, and this photon is reabsorbed and then you may
want to call it the one photon Rabi frequency. So | leave it to you, but it's called
vacuum Rabi oscillation and this Rabi frequency is usually referred to as the one
photon Rabi frequency because we obtained the Rabi frequency by calculating the

electric field of a single photon.

So the Rabi oscillations which we are observing now correspond to the periodic
spontaneous emission and re-absorption of the same photon. There's only one
photon which is spontaneously emitted and reabsorbed in a completely reversible
coherent way, and the time evolution is unitary. So it's a periodic spontaneous

emission and re-absorption of the same photon.

This has been experimentally observed. Actually, let me back up. Experiments are
done in the microwave regime. The leading groups are, well, in the older days, Dan
Kleppner, Herbert [? Weidner, ?] and Serge Haroche. And this involves Rydberg

atoms.
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Rydberg atoms in superconducting high q cavities. And those Rydberg atoms,
because things scale with n and n squared, the principal quantum number, have a
fantastically strong coupling to the electromagnetic field. And there is a homework

assignment on Rydberg atoms in such cavities.

The other example is in the optical domain. And this really involves the D line of
alkali atoms. You drive them on the D line. rubidium and caesium are often used,
and the work is enabled by the development of so-called supermirrors which have
an extremely high reflectivity, and you can realize an excellent g factor. And the

leaders in this field are Jeff Kimble and Gerhard Rempe at the Max Planck Institute.

So let me just discuss an example taken from the optical domain. So the generic
situation is that you have two mirrors which define a single mode cavity. Usually,
you have a stream of atoms. Traditionally in atomic beams, then in some
experiments in slowed atomic beams, more recently in atoms which are falling out
off the mode, and only very recently single atoms with the help of other laser beams
that are trapped inside the cavity. So they are streamed in such a way that only one
or a few atoms are in the mode volume interact with a single mode of the cavity at a

given time.

And then you want to figure out what is now happening, and you have the probe
laser, you send it through the cavity, and then you record the transmission with a

photodiode. Yanosh?

What is the mirror made of for the [INAUDIBLE]?

The mirror is made of a glass substrate, but then you would [INAUDIBLE] the
coating. And the mastering is really to put coatings on which are very pure, but then
also | think using ion sputtering, you make sure that the coating is extremely smooth
and does not have any surface irregularities which would scatter a tiny fraction of
the light. | know there are some people in Ike's group and [INAUDIBLE] group who
work with high g mirrors. What is a typical example for the reflectivity? Or the g

factor you can reach?
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5 [INAUDIBLE] and a finesse of, maybe, 500,000. And they're called superpolished

mirrors.

So finesse of about a million, and that means the mirrors have 99.9999% reflectivity.
And the superpolishing, | think, that was the last step. People had controlled the
materials, but then they found ways to make a super polish and avoid these even

one part per million scattering by surface roughness.

OK. So if you do that experiment, what would you expect? Well, it's a [INAUDIBLE]
experiment so if you would scan the probe laser, and there is nothing in it, what you
would expect is you would just expect a transmission peak at the cavity resonance.
And if you tune much further, you get the next peak at the free spectral range. Let

me just indicate that.

So this is a case for 0 atoms in the cavity. If you put 1 photon in the cavity, you no
longer-- sorry, 1 atom in the cavity, you're no longer probing a cavity, you're really
probing a system, which is no longer the cavity by itself. It's an atom-photon system.
It's a couple system. And we know it's described by our two-by-two Hamiltonian, and
this Hamiltonian has two solutions. And the two solutions are split by the one photon

Rabi frequency.

So the two eigenvalues of our Hamiltonian are at plus minus omega 1 photon. So
therefore, for n equals 1, we have a situation that we have two peaks split by the
single photon Rabi frequency. Of course, | have assumed that great care has been
spent to make sure that the cavity resonance is right where the atomic resonance

is.

So this is now for 1. If you have 10 atoms, remember the two-by-two Hamiltonian
looks the same, but it has the square root n plus 1 factor. So neglecting the 1
roughly when we have 10 atoms in the cavity, it's square root 10 larger Rabi
frequency. And therefore, we would expect that we have now a splitting of the two

modes, which is square root 10 plus 1 larger.

Actually, | didn't-- sorry, | have to collect myself now. | showed you that the Rabi
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frequency scales with square root n plus 1 in the photon field. But you should realize
that everything is [? isometric ?] between photons and atoms. It's the complete
coupling between photons and atoms. And if you would now look-- but | don't want
to do it now-- if you would now look what happens if several atoms are present in
the mode volume, you would also get a scaling which is n plus 1 in the atom

number, because the atom coupled coherently.

It is actually an effect of super-radiance, which we'll discussed later. So just take my
word. You have the same scaling with the atom number. But | have to give you my

word now, because in the experiment this is what people varied.

If they had varied power or number of photons instead, like, we couldn't have drawn
these same diagrams, right? Because then the top part of the Lorentzian changes.

If you're changing the photon number then Lorentzians change.

Say again?

So, like, right now, yes, we are varying the number of atoms so we can talk about
the splitting. But if we were varying the power or the number of photons instead,
then each of the Lorentzians, their height would change. How would you draw this

observation if you were changing the photon numbers?

You know, | don't want to go into line shape. | would probably be a Lorentzian. |
mean, all | want to discuss here is that we have a two-by-two Hamiltonian, which is
split. And if we have one atom and one photon, it is split by the single photon Rabi
frequency. If we have one atom and 10 photons, the atom can of course absorb
and emit only one. As | derived on the previous page, we would have now a Rabi

splitting, which is square root n plus 1, n being the number of photons.

But if you would start in an empty cavity with 10 atoms in the excited state, because
all the atoms are identical, they would spontaneously emit together, and then you
would have 10 atoms in the ground state, and then you would have 10 photons.
And so maybe this helps you. If you start with 10 atoms in the excited state, they do

everything together. If you have 10 atoms in the ground state with 10 photons, and
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now you have 10 photons and it's clear the 10 photons lead to a Rabi frequency,

which is proportional to the square root of 10 or to the square root of 11.

So therefore, what you will observe is you will now observe a splitting of the single
mode of the cavity which goes by the square root of n plus 1. | don't want to discuss
the line shape and the [? strings, ?] | just want to sort of discuss, in a way, the
eigenvalues of the Hamiltonian, and the eigenvalues are the positions of the

transmission peaks with a cavity.

And that has been observed. | mentioned the two leaders of the field are Gerhard
Rempe and Jeff Kimble. Well, Gerhard Rempe, he did his Ph.D. In the same group
at the same time as | did so | know him very well. Then he went and did post doc
work with Jeff Kimble, and now is the Director of the Max Planck Institute. He has
the world leading group in cavity QED. But this is sort of here the two leaders have a
joint paper, which is the first observation of the vacuum Rabi splitting in an optical

cavity.

Of course, you can easily observe it if you have a strong atomic bean with many
atoms, because then you have a good signal. And secondly, the splitting is large
and easily resolved. So what they managed to do is they managed to throttle down
the atomic beam that fewer and fewer atoms at the given time were in the cavity.

And eventually they came down to the limit of one atom.

That was an historic experiment. Of course, it's not perfect in the sense that you do
not see the deep cut between the two peaks simply because, when on average you
have one atom in the cavity, sometimes you have to atom in the cavity, and then
you have a peak in the middle. So those experiments in those days were done only
with average atom numbers and not with trapped atoms where you know for sure

there's exactly one atom in the cavity.

OK. So | don't show you an experiment, but let me just state that this sort of single
photon Rabi flopping has been observed. You start with the cavity in the vacuum
field, and you sort of see this oscillation to the ground state with one photon. But

what | want to discuss now is the situation that we are not starting with an empty



cavity. We are starting with a coherent field. You can also start with a thermal field

so there are different experiments you can do.

What would we expect now? So now the initial photon state is not the vacuum state,
but the thermal state. If you have a microwave cavity and you heat it up a little bit,
you have to cool it down to below 1 Kelvin. People use either helium-free chrio stats
or dilution refrigerators, but if you warm it up a little bit, you have a few microwave
photons in the cavity. Or, that's even more controlled, you can make the cavity ice
cold, but then you inject a few photons from your synthesizer into it-- from your
microwave generator-- and then you have a weak coherent field. But a thermal

state or a coherent state.

So what we then have is, OK, we would expect now a Rabi oscillation; however, the
frequency for the Rabi flopping is now proportional to n plus 1. And we have our
photon field in the superposition of flux states. So the fact that we have a
superposition state implies now that the Rabi oscillations have a different oscillation
frequency for the different [? tablets ?] of states labeled by n. And that leads to a

dephasing.

So that would mean that if you would look at the probability to be in the excited

state-- just think about it. You have a wave function where the atom starts in the
excited state, and the photon field is in a superposition. So now you have a two-
component wave function which has different parts, and each part has a specific

Rabi frequency. So you would have oscillations.

Let's say there is a certain probability that the cavity is in the vacuum, and then that
means that there is a component which oscillates at the vacuum Rabi oscillation
frequency. But if you have a component in your coherent or thermal state which has
two photons in it, then you have Rabi oscillations which are faster. And now you
have to superimpose them all. And if you all superimpose them, and you find that
very soon there is a damping and maybe a little bit of vigor, but you see at damping

of the population in the excited state. Q [? 2 ?] dephasing.

I'm just hesitating. | think | took this plot out of my notes, but | would expect now the
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damping should actually lead to a probability to be in the excited state of 1/2. So let
me just try to correct that. So there is a little bit of oscillation, but then there is sort of

a damping.

And eventually, if you have only a small number of photon states, then there will be
a time where you have sort of at least a partial commensurability. You have maybe
five frequencies. You know, square root 5, square root 4, square root 3, square root

2.

But then there is sort of a time where all these different frequencies have done an
integer number of oscillations each, and then you get what is called a revival. And if
you go to a large photon number, you have square root 100, square root 99, square
root 88, the revival will happen at a later and later time and eventually at infinite
times if you use a microscopic field. But for small coherent states, or thermal states,

which only involve a few photons, you will get a revival phenomenon.

And this has indeed been observed. This was actually the PhD thesis of Gerhard
Rempe, and it shows the probability in the excited state. They had previously
observed the Rabi oscillations at early times, but now the experiment had to be
adjusted, | think by using slower atoms, to observe the longer time. And here, well,

1987 for the first time revivals have been seen.

Let me dwell on that, or first are there any questions about what happens now?
Atoms in the cavity to Rabi oscillations? And if the photon field is a superposition of
only a few states due to this pseudo commensurability, you find times where you

have revivals.

| just worked out something this morning which | think is nice, because it will
highlight how you should think about spontaneous emission. So let me discuss. It
doesn't really matter, but | want to give you a specific example that we have a
coherent state. A lot of you know what a coherent photon state is. For those who

don't, it doesn't really matter for what | want to explain, and recover that in [? 8.4.22.
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But if you have a laser or if you have a microwave generator, what comes out is a
field which has a normalized amplitude of alpha, but your field is in a superposition
state or [? flux ?] states. With these prefactors, | just wanted to give you an
example. What | really just mean is that we have a coherent superposition of
number states. We have prepared that. So now we have one atom in the excited
state, it enters the cavity which has been prepared with the short pulse for a laser or

microwave synthesizer in these state alpha.

And now we want to discuss-- so this is at t equals 0-- and now | want to discuss
what happens as a function of time. Well, we know that if you have one tablet, n, we
have Rabi oscillations between the atoms in the excited state, and we have n
photons. Or it has emitted the photon, and then we have n plus 1 photon and the

cavity. But now, we have a superposition state, and we have amplitudes an.

So | mean, that's what we get. And this includes everything. It includes everything a
two-level atom does in a single mode of a cavity. And this is spontaneous emission,
stimulated emission, and reabsorption. But | want to use that now to discuss with

you the misconceptions about spontaneous emission. Colin?

We're talking about just spontaneous emissions into the cavity?

OK. I've singled out a single mode. But what happens is-- and you're just two
minutes, 30 seconds, ahead of me-- that we had discussed vacuum Rabi
oscillations or Rabi oscillations when we have n photons in the cavity. This was our
two-level system, our Hamiltonian, and all we get is Rabi oscillations with the Rabi

frequency omega n. And now we have to sort of do averaging.

I'm now discussing that we have a coherent superposition of number states. Let's
say, a pulse of coherent radiation, a coherent state, and this is what we get. You
can now, if you want, put in a [? zillion ?] of other modes, have another sum over all
the other modes you want. So I'm just doing the first step in discussing with you
what will happen, but adding more and more modes will actually not change the
structure of the answer and will be, of course, quantitatively a mess but conceptually

not more complicated.
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So | want you to really look at that and realize where is the spontaneity of
spontaneous emission. Where do you see any form of randomness associated with
spontaneous emission in this expression? | don't see it. This is a wave function, and
this time evolution is unitary. Everything is deterministic, and depending now how
we choose our coefficient, there is even a revival. It's not dissipative that a photon is

spontaneously emitted, and it's done.

We saw in the single photon Rabi oscillation it can be reabsorbed, we saw in a
slightly more complicated situation that there are at least partial revivals, and it now
depends how long we wait whether revivals will take place or whether they will be
complete revivals or partial revivals. But we don't need a revival in a coherent
evolution, the coherent evolution can just go to a complicated wave function and it's
still a single coherent wave function fully deterministically obtained form the
Hamilton operator. Sometimes it pops into our eyes through a reversible oscillation

or through revival, but we don't need that.

So let me write it down but then explain you something. So it's unitary. There is no
spontaneity at all. However, eventually we want to retrieve the classical limit. So if

we would go to this situation that the average photon number is much smaller than
1, then the fluctuation in the photon field around the mean number are very small.

For the coherent state the fluctuations are square root n.

And then, we retrieve the limit of semiclassical Rabi flopping with the Rabi frequency
omega r, which is-- I'm not consistent here with lower and uppercase [INAUDIBLE].
So it's uppercase or lowercase omega n, and this is square root n times the single
photon Rabi frequency. And, of course, for a large number of photons, we can
always make the approximation that we do not have to distinguish between n and n

plus 1.

So this is the ultimate limit if we would work in the limit of large photon numbers. So
the way how you should look at it is the following. This system undergoes a time
evolution to a state which is rather complicated. But if you make the number n large,

this becomes approximately a state where you have simply-- you know what the
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rate of the semiclassical limit? In the semiclassical limit, we have a constant laser
beam with constant electric field amplitude, e, and then we have driven Rabi

oscillations between ground and excited state.

So therefore, | don't want to show you mathematically, but in the limit of large n, you
can approximate this complicated entangled wave function by the product of Rabi
oscillations between ground and excited state times a coherent photon field. And
the correction between what | just said and this complicated wave function is like 1
over n, because it's sort of a 1 over n approximation where we have neglected

terms which the relative importance of them is 1 over n.

So therefore, there are people who will say and who will tell you when we have an
interaction of an atom with a coherent state, and let's just think in the number of n
being large, that n times out of n plus 1, we have a coherent state. The atom does
Rabi oscillation and what it does is it just emits photon into the coherent field and

takes it back, like in semiclassical physics.

But in one case out of n cases, or the rate 1 over n of the rate of the wave function
is sort of fuzzy. It's not a coherent state; it's something much more complicated. And
if you do not keep track of this complicated nature of the wave function and just do
some simple measurement by, let's say, just measuring the phase of the
electromagnetic wave by projecting onto a coherent state, then you would find that
with the probability of n the system was just staying in a coherent state. And with a
probability which is one part out of n, something else has happened, and your
detector cannot capture the entanglement of that state. And this last part is what

some people associate with spontaneous emission.

| don't know. That's my view where the spontaneity in this process is. It's not a
spontaneity in the time evolution. It's more a spontaneity if you do not care to detect
this complexity, but map it back to a coherent state. And then with a precision which
is 1 over n, you retrieve the semiclassical limit, but the difference between the
semiclassical limit and the entangled wave function, this is what some people say is

spontaneous because it's not captured by a single picture. I'm actually expecting
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some people to disagree with me, but this is sort of my view, what I'm sort of

learning from the simple examples I've given to you.

Since lke is an expert on it, maybe, lke, can | ask you the question is there actually
a simple way to show that if | go to a large n limit that you can sort of really show
that n parts out of n plus 1 is really described fully by the semiclassical limit and
there is only a 1 over n fraction where we have to look at the more complicated

wave function?

| don't think there's a simple way to do it, but one can look at the equivalence of a [?

and a factor ?] state, and they're only different by one photon number.

It's sort of clear. | mean, everything is if you approximate n by n plus 1. If you don't
care about the small difference, everything falls into place and is simple. But | was
just wondering if one could show sort of in a more direct or more intuitive or maybe
more quantitatively what is really the extra part beyond stimulated emission
absorption into the coherent state. So what sort of really the nature of what people

call the spontaneously emitted photon?

| think that | don't the question, because | still argue that it's purely [? unitary ?]

evolution even--

OK.

For that system, and therefore, it's purely [INAUDIBLE] and nothing spontaneous is

happening at all.

OK. All right. Good. OK. Fine. What is next? | think this finishes our discussion on

vacuum Rabi oscillations and revivals.

I have now two topics in light atom interaction which you may not find in many
textbooks, but it's my experience that they're really relevant. One is very conceptual.
It's about the rotating wave approximation. And the other one is just the opposite,
very technical. It's not really a new concept, but this is about saturation intensities

and cross-section of an atom for absorption. The last things, cross-section for
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absorption and saturation intensity, that's what you need when you talk to atoms in
the laboratory. These are the quantities in which we think intuitively about light atom

interaction.

So it's not involving any concept. | want to spend 20 minutes in introducing for you
saturation, saturation parameter, cross-section, what's different between
monochromatic light and broadband light. But before | do that, | have a few minutes
on the rotating wave approximation. So let's call it rotating wave approximation

revisited. Again, rotating wave approximation.

And what | want to discuss can be discussed in the fully quantized picture, but also

in the semiclassical picture.

In the fully quantized picture, just a reminder, what we discussed earlier was that
when we have the atomic raising and lowering operator and the photonic raising
and blowing operator, we got four terms. And two of the terms are co-rotating, two
are counter-rotating. But | can get exactly the same number of four terms in this

semiclassical picture, and | want you to see both.

But in the quantized picture, it's actually easier, because when you see a and [? a
dega, ?] you know immediately one is absorption one is emission. So therefore let
me explain to you what | want to tell you about the rotating wave approximation
using the semiclassical picture, because then you immediately know how to apply it

to the quantized picture.

So what | want to bring in the here in addition to what we have discussed about light
atom interaction, we had sort of a dipole Hamiltonian, is the fact that we have
circular polarized light, left-handed and right-handed light, and | want to sort of use
that and combine it with angular momentum selection roles, which as you
remember we discussed after our discussion of dipole, quadrupole, and magnetic

dipole positions.

So | put now all those parts together and revisit the rotating wave approximation. So

what | hope for is it tells you a little bit how selection roles, angular momentum,
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circular polarization, and semiclassical field which rotate in one direction how they
are all connected. So | have to set up the situation by saying that we use as a
quantization axis the direction k, which is either the direction of the propagation of
the light beam or, in general, it's orthogonal to the polarization of the electric and

magnetic field.

And | can talk about an electric field driving an electric dipole transition. | can talk
about a magnetic field driving a magnetic transition. It doesn't really matter. | will
use [? Bsc ?] amplitude, but you can also immediately think electric dipole, and this
field is linearly polarized. But | want to immediately decompose this field into right-
handed and left-handed field. Or a linearly polarized field can be regarded as a
superposition of a field which circulates this way plus one which circulates the other

way.

And ultimately, the message we will see is that if you have linearly polarized light,
we always get counter-rotating term, we always have a [INAUDIBLE] shift and such.
But if you use rotating fields or circularly polarized light, selection roles may actually
lead to the result that there is no counter-rotating term at all. So this is eventually

what I'm aiming for, and this will be the final point of the discussion.

So the field which rotates in the right-handed direction where the rotating field is a
superposition of x and y, or i and j. And one the rotates has a cosine omega t and
one has sine omega t. | don't need to write down the left-handed part, because
there's just a minus sign. Or this will actually become very handy. | do all the
discussion for the right-handed part, but | can always obtain the expression for the

left-handed part by replacing omega by minus omega.

Which will mean that some emission process by the right-handed part will be an
absorption process by the left-hand part. Be we'll see. You can change angular
momentum by plus 1 by absorbing a right-handed photon or-- you'll see. We'll get

there. So anyway, those signs will become important.

Let me now take the above expression for the right-handed part and replace cosine
omega t and sine omega t by e to the i omega t. So this was the i component, this
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was the j component. We divide by 2.

Just to avoid confusion, | want to emphasize I've started with a real field. So I'm not
using, as you often do in e and m complex field and the real fields are the real part,
| have not started out by adding, you know, imaginary parts to the field. I've started
out with a linearly polarized field in the x direction cosine omega t, and I've
decomposed it into two real fields. One is right-handed, one is left-handed. Complex
numbers only come because | want to use a complex exponential to replace cosine

omega t and sine omega t.

We are almost done with the decomposition of the field. | just wanted to-- we have
now four terms, and | want to [? recoup ?] them. i minus imaginary unit j. i plus

imaginary unit j. This is e to the i omega t. And this is e to the minus i omega t.

So what have we done? Well, we've just started with linearly repolarized light, and
I've rewritten the expression twice, and now we are looking only at one of the
circular components, and in the end what we have is four terms. Well, that's also
what we had in the fully quantized Hamiltonian, and we now want to identify what
those four terms. Two will be co-rotating, two will be counter-rotating, but it's very

helpful to analyze those terms.

But there are two things we have to look at now. One is we have an e to the i
omega t. And, well, it's probably a sign convention, but trust me, if you put that in
the Schrodinger equation, it mean that you increase the energy of the atom if you
drive it with e to the i omega t. You take it from a ground state to an excited state,
which differs in frequency by omega, and therefore this means you have increased

the energy of the system, and this corresponds to absorption.

Whereas this one here means we take an atom from an excited state to a ground
state, and this is the situation of stimulated emission. Remember, in selection roles
we take our field and we multiply it with a dipole moment, electric, magnetic dipole
moment whatever. But now we want to use also the spherical tensor decomposition

of those dipole moments.
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It's a complicated word, but what it means is those terms are dotted with the dipole
moment, and if you do it now component-by-component, we retrieve selection roles
because this peaks out the-- let me just write it down-- the x plus y tensor
component of the matrix element. And this corresponds to delta m equals plus 1.
We change the angular momentum by one unit, and of course this term is then

delta m equals minus 1.

So we have done the work. What | want to do now is just map those terms into and
energy level diagram. | like sort of pictorial representations, and each term becomes

now a graphical [INAUDIBLE].

So let us assume we have a system, hydrogen is to p state. But let's say generally
we go from a j equals 0 to j equals 1 state, which has three components. Now, |
have set it up in such a way that-- oops, we need a little bit extra space. I've set it up
in such a way that the states here, this is m equals 0, this is m equals plus 1, and

this is m equals minus 1.

So therefore-- let me just use color coding now-- this one here is delta m equals
plus 1 so this one always moves to the right. It changes angular momentum by 1 so
it can always move to the right, whereas the other one, delta m equals minus 1,
moves to the bank. Absorption is e to the i omega t, always moves up. And

stimulated emission moves down.

So with that what happens is this term here transfers one unit of angular momentum
and energy. So that would mean this term goes up here. It could go up here, if [?
there were a 7] state. The other term-- let me use a green color-- is driving the
process in the opposite direction. But now we have to also consider that you can go

down here, and you can go down to a virtual state.

A virtual state is just something which has the same wave function as a state, it just
has an e to the i omega t, which is not-- it's a driven system. You drive it. You
[INAUDIBLE] a state. You [INAUDIBLE] a state at the drive frequency, and it just
means, in this case, this state has an oscillation e to the i omega t, which is very,
very different from what a state which is populated would have, and this is what we
17



call a virtual state.

So in other words, what is possible is we have our three states, plus minus 1 and 0,
but this is the spatial wave function including angular momentum. But we can now
drive it by plus omega and minus omega, and therefore we can have it as virtual
states pretty much at any energy we want. But this process here is not possible,
because this would require to go to a state which has m equals 2, which does not

exist.

So now what I've shown here is if we would stock in the m equals 0 state, I've
shown you the four terms, two are co-rotating and two are counter-rotating. If you
neglect this virtual state which has a detuning of about 2 omega, or 2 resonance
frequency of the atom, this is the rotating wave approximation. One term is
responsible for absorption; the other term is responsible for a stimulated emission.

But if | don't make the rotating wave approximation, | have those two extra terms.

So this is only the right-handed light, and | want to sort of play a little bit with this
concept. If | would take the left-handed light, | would add sort of four more arrows.
Two more here and two more here. But let's just keep the situation as simple as
possible. But | really sort of like that you write down right-handed, left-handed side,
decompose it into its components, and each component is now in this diagram
connected to an arrow where one direction is angular momentum, the other one is

energy.

So let me now talk about other energy diagrams. And this will lead to the answer.
Well, can we create a situation where we have only two terms, which would be the
simplest two-level system, can be directly realized without any rotating wave

approximation a two-level system?

So if we had two levels, which have only m equals 0 and m equals 1. So this would
be the situation | just discussed with those two levels. So the only way how | can fit
in this arrow is this one, and the diagonally downward arrow is that. So in this case,
rotating wave approximation is not an approximation, it is exact. But some purists

will actually say, hey, you can never realize that when you have an n equals plus 1
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state. Then you always have an m equals minus 1 state. And then you have a
virtual state down there, and then you get two more terms, which are the counter-

rotating terms which | just showed above.

So whole | would say if you have a neutron star which makes an infinitely high
magnetic field, you can have a huge [INAUDIBLE] splitting between m equals plus 1
and m equals minus 1 and completely move one of the angular momentum states
out of the picture. But, of course, in the rotating wave approximation we are
neglecting off resonant terms at 2 omega, omega being an electronic excitation
energy, so I'm really talking about Zeeman shifts here to eliminate the other state

which may be comparable to electronic energies.

So in principle, | can say this is my Hilbert space, and in this Hilbert space no
rotating wave approximations is needed. But it's maybe an artificial Hilbert space.
When | had a discussion with other people, we came up with the possibility of some
forbidden transition. If you go from a doublet s to a doublet s state so all you have is
a spin system which has 1/2 angular momentum plus 1/2 minus 1/2. And then you
realize that the only way how you can fit in the orange arrow is in this way, and the

green arrow in this way.

So here you would have a situation where the rotating wave approximation is exact.
But, of course, it's not an electric dipole transition; it's some sort of weaker

conversation, which may be forbidden.

I need two more minutes. | have discussed the case where we have quantized
along a direction, | called it the k direction, and the polarization of the
electromagnetic field was [? i and j ?] was perpendicular to it. So let me now discuss
a case where we quantize along the polarization of the electromagnetic field, and
you remember from our discussion on selection roles that this is pi light. So in this
case, our magnetic or electric field is polarized along the i direction, and the real
cosine omega t gets decomposed into e to the plus e to the minus i omega t. And

we know already one term is absorption one is emission.

And now, if | take my j equals 0 to j equals 1 system, pi light has a selection role of
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delta m equals 0. So now | have an arrow, which | want to be orange, which goes
up. And a green arrow-- this is a great program. The only thing is you have to be
very careful when you change color and press carefully. That's why sometimes the

colors are not doing what | want. But here is green.

But now, of course, with linearly polarized light we can always go down to a virtual
state. We have now four terms. Two are rotating, two are counter-rotating. So
therefore the quick conclusion of the last ten minutes is that there is the possibility
that counter-rotating terms can be 0 for sigma plus sigma minus light due to angular

momentum selection roles.

But what we have also learned is if you have the m plus 1 state in there's an m
minus state, if you have circularly polarized light and we drive a transition between
two m states, the counter-rotating term does not come from the same set of two
states, m equals 1. It involves m equals minus 1. So it's the other state which is
maybe degenerate or only slightly [? split ?] by a magnetic field which is responsible
for the counter-rotating terms. Anyway we have talked so much about rotating wave
approximation and those terms, | just wanted to show you how it is modified if you

use degeneracy p states and angular momentum.

Any question? OK.
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