How proton and carbon spectra arise from the density matrix

I. Chuang

MIT Center for Bits and Atoms, Media Laboratory April 10, 2003

I. INTRODUCTION

The MIT Junior Lab QIP labguide claims that a two-spin density matrix

$$\rho = \begin{bmatrix}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & d
\end{bmatrix}
\tag{1}$$

produces a proton spectrum with peak areas a-c and b-d for the $\omega_P-J/2$ and $\omega_P+J/2$ peaks, respectively, after a $R_x(\pi/2)\otimes I$ proton readout pulse is applied. The same density matrix also produces a carbon spectrum with peak areas a-b and c-d for the $\omega_C-J/2$ and $\omega_C+J/2$ peaks, respectively, after a $I\otimes R_x(\pi/2)$ carbon readout pulse is applied.

Here, we prove this claim, based on the fact that the voltage in the pick-up coil for spin k is given by

$$V(t) = -V_0 \operatorname{tr} \left[e^{-iHt} \rho e^{iHt} (i\sigma_x^k + \sigma_y^k) \right], \qquad (2)$$

where H is the Hamiltonian for the two-spin system, σ_x^k and σ_y^k operate only on the kth spin, and V_0 is a constant factor dependent on coil geometry, quality factor, and maximum magnetic flux from the sample volume.

II. THE READOUT OPERATOR

Let $R_{xP} = R_x(\pi/2) \otimes I$ denote a $\pi/2$ readout pulse on the proton, and R_{xC} similarly for the carbon. Our goal is to compute

$$V_P(t) = -V_0 \operatorname{tr} \left[e^{-iHt} R_{xP} \rho R_{xP}^{\dagger} e^{iHt} [(i\sigma_x + \sigma_y) \otimes I] \right], \tag{3}$$

and similarly for the carbon. It is helpful first to move into the rotating frame of the proton and carbon, in which case nothing changes except we utilize the Hamiltonian

$$H = \frac{J}{4}\sigma_z \otimes \sigma_z \,, \tag{4}$$

representing the spin-spin coupling. Utilizing the cyclic property of the trace, $V_P(t)$ can be written as

$$V_P(t) = -V_0 \operatorname{tr} \left[\rho R_{xP}^{\dagger} e^{iHt} [(i\sigma_x + \sigma_y) \otimes I] e^{-iHt} R_{xP} \right], \tag{5}$$

at which point it is useful to define

$$\hat{M}_P = -R_{xP}^{\dagger} e^{iHt} \left[(i\sigma_x + \sigma_y) \otimes I \right] e^{-iHt} R_{xP} \tag{6}$$

as our proton magnetization "readout operator," such that $V_P(t) = V_0 \operatorname{tr}(\rho \hat{M}_P)$. Explicitly working this out in terms of matrix products, we obtain:

$$\hat{M}_{P} = -R_{xP}^{\dagger} e^{iHt} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2i & 0 & 0 & 0 \\ 0 & 2i & 0 & 0 \end{bmatrix} e^{-iHt} R_{xP}$$

$$(7)$$

$$= -R_{xP}^{\dagger} \begin{bmatrix} e^{\frac{i}{4}Jt} & 0 & 0 & 0 \\ 0 & e^{\frac{-i}{4}Jt} & 0 & 0 \\ 0 & 0 & e^{\frac{-i}{4}Jt} & 0 \\ 0 & 0 & 0 & e^{\frac{i}{4}Jt} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2i & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} e^{\frac{-i}{4}Jt} & 0 & 0 & 0 \\ 0 & e^{\frac{i}{4}Jt} & 0 & 0 & 0 \\ 0 & 0 & e^{\frac{i}{4}Jt} & 0 \\ 0 & 0 & 0 & e^{\frac{-i}{4}Jt} \end{bmatrix} R_{xP}$$

$$= -R_{xP}^{\dagger} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 2ie^{-\frac{i}{2}Jt} & 0 & 0 & 0 & 0 \\ 0 & 2ie^{\frac{i}{2}Jt} & 0 & 0 & 0 \end{bmatrix} R_{xP}$$

$$(9)$$

$$= -R_{xP}^{\dagger} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2ie^{-\frac{i}{2}Jt} & 0 & 0 & 0 \\ 0 & 2ie^{\frac{i}{2}Jt} & 0 & 0 \end{bmatrix} R_{xP}$$

$$(9)$$

$$\begin{bmatrix}
\frac{1}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}} & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}} & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}} & 0 \\
\frac{i}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \\
0 & \frac{i}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
2ie^{-\frac{i}{2}Jt} & 0 & 0 & 0 & 0 \\
0 & 2ie^{\frac{i}{2}Jt} & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\frac{1}{\sqrt{2}} & 0 & \frac{-i}{\sqrt{2}} & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & \frac{-i}{\sqrt{2}} \\
-\frac{i}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \\
0 & 2ie^{\frac{i}{2}Jt} & 0 & 0
\end{bmatrix}$$
(10)

$$= \begin{bmatrix} e^{\frac{-i}{2}Jt} & 0 & -ie^{-\frac{i}{2}Jt} & 0\\ 0 & e^{\frac{i}{2}Jt} & 0 & -ie^{\frac{i}{2}Jt}\\ -ie^{-\frac{i}{2}Jt} & 0 & -e^{\frac{-i}{2}Jt} & 0\\ 0 & -ie^{\frac{i}{2}Jt} & 0 & -e^{\frac{i}{2}Jt} \end{bmatrix}.$$

$$(11)$$

Similarly, we find that the analogous carbon magnetization "readout operator" \hat{M}_C is

$$\hat{M}_P = -R_{xC}^{\dagger} e^{iHt} \left[I \otimes (i\sigma_x + \sigma_y) \right] e^{-iHt} R_{xC}$$
(12)

$$= -R_{xC}^{\dagger} e^{iHt} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 2i & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2i & 0 \end{bmatrix} e^{-iHt} R_{xC}$$

$$= \begin{bmatrix} e^{-\frac{i}{2}Jt} & -ie^{-\frac{i}{2}Jt} & 0 & 0 \\ -ie^{-\frac{i}{2}Jt} & -e^{-\frac{i}{2}Jt} & 0 & 0 \\ 0 & 0 & e^{\frac{i}{2}Jt} & -ie^{\frac{i}{2}Jt} \\ 0 & 0 & 0 & e^{\frac{i}{2}Jt} & e^{\frac{i}{2}Jt} \end{bmatrix} .$$

$$(13)$$

$$= \begin{bmatrix} e^{\frac{-i}{2}Jt} & -ie^{-\frac{i}{2}Jt} & 0 & 0\\ -ie^{-\frac{i}{2}Jt} & -e^{\frac{-i}{2}Jt} & 0 & 0\\ 0 & 0 & e^{\frac{i}{2}Jt} & -ie^{\frac{i}{2}Jt}\\ 0 & 0 & -ie^{\frac{i}{2}Jt} & -e^{\frac{i}{2}Jt} \end{bmatrix}.$$

$$(14)$$

THE PROTON AND CARBON SPECTRA

 \hat{M}_P and \hat{M}_C are very useful, because they now allows us to compute the free induction decay signal for the proton (centered in frequency around ω_P) and carbon (centered about ω_C) for any state ρ . For the state in Eq.(1), we obtain the proton FID

$$V_P(t) = V_0 \operatorname{tr} \left(\rho \hat{M}_P \right) \tag{15}$$

$$= V_0 \operatorname{tr} \left(\begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{bmatrix} \begin{bmatrix} e^{\frac{-i}{2}Jt} & 0 & -ie^{-\frac{i}{2}Jt} & 0 \\ 0 & e^{\frac{i}{2}Jt} & 0 & -ie^{\frac{i}{2}Jt} \\ -ie^{-\frac{i}{2}Jt} & 0 & -e^{\frac{-i}{2}Jt} & 0 \\ 0 & -ie^{\frac{i}{2}Jt} & 0 & -e^{\frac{i}{2}Jt} \end{bmatrix} \right)$$

$$(16)$$

$$= V_0 \left[(a-c)e^{-iJt/2} + (b-d)e^{iJt/2} \right]. \tag{17}$$

And for the carbon FID,

$$V_C(t) = V_0 \operatorname{tr}(\rho \hat{M}_C) = V_0 \left[(a - b)e^{-iJt/2} + (c - d)e^{iJt/2} \right].$$
 (18)

MIT OpenCourseWare https://ocw.mit.edu

8.13-14 Experimental Physics I & II "Junior Lab" Fall 2016 - Spring 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.