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I. INTRODUCTION

The MIT Junior Lab QIP labguide claims that a two-spin density matrix

a 0 0 0
0 b 0 0

P=10 0 ¢ 0 (1)
000 d

produces a proton spectrum with peak areas a — ¢ and b — d for the wp — J/2 and wp + J/2 peaks, respectively, after
a R,(m/2) ® I proton readout pulse is applied. The same density matrix also produces a carbon spectrum with peak
areas a — b and ¢ — d for the we — J/2 and we + J/2 peaks, respectively, after a I ® R, (w/2) carbon readout pulse is
applied.

Here, we prove this claim, based on the fact that the voltage in the pick-up coil for spin k is given by

V(t) = —Votr [e_thpeth(iaf + U];):| , (2)
where H is the Hamiltonian for the two-spin system, o¥ and of operate only on the kth spin, and V; is a constant

factor dependent on coil geometry, quality factor, and maximum magnetic flux from the sample volume.

II. THE READOUT OPERATOR

Let Ryp = R;(w/2) ® I denote a 7/2 readout pulse on the proton, and R,¢ similarly for the carbon. Our goal is
to compute

Vp(t) = —Votr [e_thRIppRlPeth[(iax to) @1, (3)

and similarly for the carbon. It is helpful first to move into the rotating frame of the proton and carbon, in which
case nothing changes except we utilize the Hamiltonian

J
H:ZUZ®JZ, (4)

representing the spin-spin coupling. Utilizing the cyclic property of the trace, Vp(t) can be written as
Vp(t) = —Votr [pRlPeth[(iax +o,)@Ie " 'R, p| | (5)

at which point it is useful to define

Mp = —R! eiflt [(m to,) @I e R, p (6)

as our proton magnetization “readout operator,” such that Vp(t) = Vptr (pM p). Explicitly working this out in terms
of matrix products, we obtain:

0O 0 0 O

v ot oaEe |00 0 0 _imy

Mp = Ra:Pe 2 0 0 0 € R.p (7)
0 2¢: 0 O
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Similarly, we find that the analogous carbon magnetization “readout operator” M is

Mp = —Riceth I ® (io, + O'y)} e R -

0O 0 0 O
= Ree™ 17y g g ¢ e
0 0 2¢ 0
ez It e~ 3t 0 0
| —dem2 ezt 0
N 0 0 ezt —jez/t
0 0 —jezdt ezt

III. THE PROTON AND CARBON SPECTRA

(10)

Mp and M¢ are very useful, because they now allows us to compute the free induction decay signal for the proton
(centered in frequency around wp) and carbon (centered about w¢) for any state p. For the state in Eq.(1), we obtain

the proton FID
Vp(t) = Votr (pMp)

a 0 0 0 e%lJt 0 —ie_%‘]t

:Votr 0O b 0 O O e%']t 91 —Ze%‘]t
00 ¢ O je"zJt 0 ez It
00 0 d 0 —jezdt 0 —ez/?

And for the carbon FID,

Vo(t) = Vatr (pMc) = Vq [(a —b)e 2 4 (c— )t

(15)

(16)

(17)
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