
Chapter 5

Perturbation Theory

In this chapter we will discuss time dependent perturbation theory in classical mechanics.
Many problems we have encountered yield equations of motion that cannot be solved ana-
lytically. Here, we will consider cases where the problem we want to solve with Hamiltonian
H(q, p, t) is “close” to a problem with Hamiltonian H0(q, p, t) for which we know the exact
solution. We say

H(q, p, t) = H0(q, p, t) + ∆H(q, p, t) , (5.1)

where ∆H is small. The general idea is to expand variables

z(t) = z0(t) + εz1(t) + ε2z2(t) + . . . , (5.2)

for z ∈ {q, p} and use the expanded equations of motion to determine the series

k

z0(t)→ z(1)(t)→ z(2)(t)→ . . . , where z(k)(t) =
∑

εjzj(t) . (5.3)
j=0

We can do this with any of our methods for solving problems in classical mechanics, including
the Euler-Lagrange equations, Hamilton equations, Poisson bracket equations, or Hamilton-
Jacobi equations. Since there are some practical benefits, our focus will be on doing this for
the Hamilton-Jacobi equations, but lets first start with an example where we carry out an
expansion for the Hamilton equations.

Example Consider H0 = p2 mω2

the free Hamiltonian, and ∆H =
2m

x2. Here ω is an oscillator
2

frequency. The full Hamiltonian H = H0 + ∆H in this case is just a Harmonic oscillator
where we already know the solution, so we have the opportunity to see how this solution is
built up perturbatively. Without any approximation, the Hamilton equations are

p
ẋ = , ṗ = −mω2x . (5.4)

m

To carry out perturbation theory we are going to count w2 as O(ε) and then at each order
we balance the number of εs on each side of the equations of motion. For H0, we have
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CHAPTER 5. PERTURBATION THEORY

ṗ0 = 0 so the momentum p0 is a constant which we fix as the initial condition value. We
also have ẋ0 = p0 (since w2 does not appear we have not dropped anything in this equation).

m

Integrating we get x0 = p0 t, where we have taken the initial condition x(t = 0) = 0 for
m

simplicity.
Having setup the 0’th order solution, lets now consider determining the solution at 1’st

order. At first order the RHS of the equations of motion should be O(ε). Therefore

ṗ(1) = − 2 0
x(0) = −mω2pmω t =

m
−ω2t p0, (5.5)

p(1) 1
(t) = p0 − p0ω

2t2.
2

For the other equation of motion at this order we then have

ẋ(1) p(1)

=
p0

=
m

p

m
− 0ω

2t2
, (5.6)

2m

x(1) p0
(t) =

p
t

m
− 0ω

2t3
.

6m

These are precisely the 1st order terms in the full solution

p0
p(t) = p0 cos(ωt), x(t) = sin(ωt). (5.7)

mω

5.1 Time Dependent Perturbation Theory for the

Hamilton-Jacobi Equations

From here on we will focus on using H-J methods. If H = H0 + ∆H, then the solution for
H0 has a principal function S(q, α, t) that is the generating function that makes a canonical
transformation (q, p)→ (α, β), so that

S
H
( ∂

0 q,
∂q
, t
)

+
∂S

= 0 . (5.8)
∂t

For the dynamics generated by H0 the variables (α, β) are constants. However, the result-
ing canonical transformation provides a new set of variables that is valid for use with any
Hamiltonian, they are just particularly simple variables for H0. Therefore, for H, we can
still use the canonical transformation generated by S, but now the new variables

Pi = αi = αi(p, q) , Qi = βi = βi(p, q) , (5.9)
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CHAPTER 5. PERTURBATION THEORY

will no longer be constant in time. The new Hamiltonian is

∂S
K = H0 + ∆H + = ∆H = ∆H(α, β, t) (5.10)

∂t

˙The new Hamilton equations Qi = ∂K ˙and Pi =
∂Pi

− ∂K now yield exact equations of motion
∂Qi

for these variables

∂∆H
α̇i = − ∂∆H˙, βi =

∂βi
. (5.11)

∂αi

The idea of perturbation theory is to solve these equations with an expansion. Since here
the small ∆H ∼ ε appears on the RHS of both equations, we will always use lower order
solutions on the RHS to obtain the higher order results on the LHS. Thus we use α(0) and
β(0) to get the first order α(1) and β(1):

(1) ∂∆H
α̇i = − ∂

=
∂βi

∣∣∣ ∆H∣ (0)
αi=αi

(0)

−
βi=βi

,
∂βi

∣∣∣∣ (5.12)
0

˙ (1) ∂∆H
βi =

∂
=

∂αi

∣∣∣ ∆H∣ (0)
αi=αi

(0)
βi=βi

,
∂αi

∣∣∣∣
0

where the |0 is a shorthand notation. We then use α(1) and β(1) to get α(2) and β(2), and so
on. At nth order we have

(n) ∂∆H
α̇i = − ∂

=
∂βi

∣∣∣ ∆H∣ (n
αi=α

−1)
i
(n

βi=β
−1)

−

i

,
∂βi

∣∣∣∣ (5.13)
n−1

˙ (n) ∂∆H
βi =

∂
=

∂αi

∣∣∣ ∆H∣ (n
αi=α

−1)
i
(n

βi=β
−1)

i

.
∂αi

∣∣∣∣
n−1

Example Lets once again consider H0 = p2 2

and ∆H = mω
2m

x2. For H0, the H-J equation is
2

1 ∂
2m

(
S 2

∂x

)
+ ∂S − 2

= 0. As x is cyclic, the solution is S = αx α
∂t

t. Here,
2m

∂S
P = α , Q = β =

α
= x

∂α
− t , (5.14)
m

giving the exact transformation equations

α
x =

∂S
t+ β , p =

m
= α .

∂x
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CHAPTER 5. PERTURBATION THEORY

For simplicity, we can take the initial constants as α(0) = α0 and β(0) = β0 = 0. In terms of
2

the new variables our perturbing Hamiltonian is ∆H = mω α
2

( 2
t+ β

m

)
, so prior to expanding

the full equations of motion are

∂∆H
α̇ = − α

=
∂β

−mω2
(

t+ β
m

)
, (5.15)

∂∆H
β̇ =

α
= ω2t

∂α

(
t+ β

)
.

m

Plugging in 0th order solutions on the RHS, to 1st order we have

α̇(1) = −ω2 1
α0t ⇒ α(1)(t) = α0 − ω2α0t

2 , (5.16)
2

β̇(1) ω2

=
ω2

α0t
2

m
⇒ β(1) α0t

3

(t) = .
3m

If we change back to our original variables with the inverse transformation (which we may
wish to do at any point) this gives

p(1) 1
= α(1) = α0 − ω2α0t

2, (5.17)
2

and

x(1) α(1)(t)
(t) =

α
t+ β(1) 0

(t) =
m

ω2α
t

m
− 0 t

3

m

ω2α0
+

2

t3

m

α0
=

3

ω2α
t

m
− 0 t

3

m
, (5.18)

3!

which are the same results we previously obtained by solving Hamilton’s equations pertur-
batively.

5.2 Periodic and Secular Perturbations to Finite Angle

Pendulum

Example Let us consider a case where we do not have a simple solution. Consider a
pendulum, with

p2

H = −mga cos(θ) (5.19)
2ma2

with θ � 1. Expanding the cosine term we have

p2

H = −mga+
mga

+
2ma2

2 mga
θ +

2

θ
θ2

2

(
2

− θ4

+
12

+ . . .
360

)
. (5.20)
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CHAPTER 5. PERTURBATION THEORY

In this case, the first term is a constant that will not play a role in our equations of motion,
so we can identify H0 = p2

+ mga
2ma2 θ2. If we are only interested in applying first order

2

perturbation theory we can simply take ∆H = −mgaθ4 and drop terms of
24

O(θ6) and higher.
The Hamiltonian H0 is just a harmonic oscillator with ‘moment of inertia I = ma2 and
frequency Ω2 = g . Again we use Ω here for angular frequency of the H0 harmonic oscillator,

a

to avoid confusion with the angle variable ω.
The action-angle variables for H0 are

Ω
α = H0 = J, ω = νt+ β (5.21)

2π

where ν = Ω , J is the action variable, and ω is the angle variable. This gives
2π

θ =

√
2α

sin(ωt+ δ) =
Iω2

√
J

sin
πIΩ

[
2π(νt+ β)

]
, (5.22)

p =
√

2Iα cos(ωt+ δ) =

√
IJΩ

cos 2π(νt+ β) .
π

Since ω and β are linearly related, we are free to take (J

[
, β) as our new

]
canonical variables

when using the transformation in Eq. (5.22).
If we use (J, β) as the new variables, with J (0) = J0 and β(0) = β0 as given constants

fixed by the initial conditions, then in terms of the new variables

mga
∆H = − J2

θ4 =
24

− sin4(2π(νt+ β)). (5.23)
24π2I

Expanding by using the 0th order solution gives

β̇(1) ∂∆H
=

∂J

∣∣∣∣
0

= − J0
sin4(2π(νt+ β0)) , (5.24)

12π2I

J̇ (1) ∂∆H
= − J

=
∂β

∣∣∣ 2∣ 0

0

sin3(2π(νt+ β0)) cos(2π(νt+ β0)) .
3πI

These results can be integrated to give β(1) = β(1)(J0, β0, ν, t) and J (1) = J (1)(J0, β0, ν, t).
Before we consider computing these functions, lets pause to characterize two types of solu-
tion that occur in a more general context than simply this example.

Often we can characterize the nature of the perturbative solution without requiring a full
study of the analytic form of a solution. A common situation where this is the case is when
H0 exhibits periodic orbits (as in the harmonic oscillator) with some frequency ν. In this
case a relevant question is the following: what cumulative effect does the small perturbation
have after going through one or more periods T = 1 ? There are two possibilities:

ν
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CHAPTER 5. PERTURBATION THEORY

• The perturbation itself could be periodic, where the parameter returns to its initial
value. Here the perturbed trajectory looks much like the unperturbed one.

• Alternatively, we could have a net increment in the parameter after each orbit, called
a secular change. After many periods, the parameter will be quite different from its
value in H0.

Example Returning to our pendulum from before, the interesting quantity to study is the
average over one period of the time rate of change of the variable,

1
J̇ (1) =

T

T

∫
J̇ (1) J (1)(T )

(t) dt =
− J (1)(0)

0

, (5.25)
T

since this tells us how much the variable changes over one period. For our example ˙

b
∫ J (1) = 0

2π
ecause sin3(θ) cos(θ) dθ = 0, and therefore the perturbation to J is periodic. Actually,

0

from integrating Eq. (5.24) we have

J (1) J2

(t) = J0 + 0 sin4(2π(νt+ β0)) . (5.26)
24π2Iν

Note from Eq. (5.22) that J determines the amplitude for θ(t) and p(t). A comparison
between the trajectory with J0 and with J (1)(t) is made in Fig. 5.1, where for this figure we
set β0 = 0.

p

θ

with
J (1)

withJ0

Figure 5.1: Comparison of the pendulum’s periodic phase space trajectory using J0 and
J (1)(t).

In contrast, using
∫ 2π

sin4(θ) dθ
0 2π

= 3 , we find
8

1
β̇(1) =

T

T

∫
β̇(1) β(1)(T )

(t) dt =
− β(1)(0)

0

J
=

T
− 0

, (5.27)
32π2I
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CHAPTER 5. PERTURBATION THEORY

which means β experiences a secular change. After many periods (t � T ) the change

continues to build up, and we have on average that β(1)(t) ≈ β̇(1) t + β0. (If we look at
the exact solution for β(1)(t) then it has precisely this linear term in t, plus terms that are
periodic over the period τ , and that is what we mean by the ≈ here.) Looking back at how
the β(t) dependence appears in θ = θ(J, β, t) and p = p(J, β, t) from Eq. (5.22), we see that

on average the 1st order perturbation simply shifts the frequency to ν ′ = ν + β̇(1).

Recall that we determined the full frequency νfull(E) numerically as an example in our
study of action-angle variables, which is shown below in Figure 5.2. Recalling that J0 =

-1 1
E = E/mga

νfull

ˆFigure 5.2: The full frequency νfull vs. E

H0 = E+mga
ν

, we can write our perturbative shift to the frequency as a function of energy
ν

ν ′ − ν =
(E +mga)

β̇(1) = − . (5.28)
32π2ma2ν

This is the first order correction to νfull(E) when it is expanded about the simple harmonic
oscillator minimum at E = −mga, which in Fig. 5.2 gives the negative linear correction to

ˆthe frequency that occurs just above E = E/(mga) = −1.

5.3 Perihelion Precession from Perturbing a Kepler

Orbit

Kepler Example: Consider a central force perturbation

1
H =

p
p

2m

( 2
2 ψ
r +

k

r2

)
−
r︸ ︷︷

h−

H0

︸ rn︸︷︷ (5.29)

∆H
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CHAPTER 5. PERTURBATION THEORY

where the coupling parameter h is small and n ≥ 2. The action-angle variables for H0 are

J1 = Jφ ω1 = ωφ − ωθ
J2 = Jθ + Jφ ω2 = ωθ − ωr
J3 = Jr + Jθ + Jφ ω3 = ωr

where only ω̇3 = νr 6= 0, and all the others are constant in time. The pairs (ωi, Ji) for
i ∈ {1, 2, 3} are all canonically conjugate. One way to see this is to note that we can
implement a change of variables from the canonical pairs {(ωr, Jr), (ωθ, Jθ), (ωφ, Jφ)} that we
considered earlier, to these variables by using the generating function

F2 = (ωφ − ωθ)J1 + (ωθ − ωr)J2 + ωrJ3. (5.30)

Let us study the perihelion precession, with the parameter ω = 2πω2 determining the
perihelion angle. Some examples of precession are shown in Fig. 5.3, where in the case of a
planet, the precession is like that of Fig. 5.3(b) with the sun at the focus of the ellipse. We

Figure 5.3: Precession of the perihelion from the point of view of coordinates centered on (a)
the center of the ellipse, and (b) the focus of the ellipse. The latter is relevant for a planet
like mercury orbiting the sun (shown with exaggerated eccentricity here).

know that

∂∆H
ω̇2 = , J2 = Jθ + Jφ = 2παθ = 2π` (5.31)

∂J2

where ` = |L| is the magnitude of the angular momentum. From the equation of motion
ẇ2 = ∂∆H/∂J2 we therefore have

∂∆H
ω̇ = 2π

∂∆H
=

∂J2

, (5.32)
∂`
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CHAPTER 5. PERTURBATION THEORY

and perturbatively, ω̇(1) = ∂∆H .
∂`

∣∣ We can average over the orbit to find the secular change:
0

1
ω̇(1) =

∫ T ∂∆H

T 0

∣
dt. (5.33)

∂`

∣∣∣
0

Recall for the Kepler problem that E(0) = −(2π2k2m)/J2 th
3 , and that at 0 order the period

is
1

T = = πk
νr

√
m

= T (J
− 3). (5.34)

2E(0)3

Therefore ∂
∂`

= 2π ∂ does not act on T = T (J3), so we can pull the partial derivative outside
∂J2

the integral,
∂

ω̇(1) =
1

∂`

( T

T

∫
∆H

0

|0 dt
)

∂
=
∂`

∆H|0 . (5.35)

Thus we must calculate the average of ∆H over one period,

h
∆H|0 = −

T

T

∫
dt

0

. (5.36)
rn(t)

Using ` = mr2ψ̇ so that dt = mr2

dψ to switch variables from t to ψ, and then using the
`

orbital equation for r(ψ) we have

hm
∆H|0 = −

2

`T

∫ π dψ

0

hm
=

rn−2(ψ)
− mk

`T

( n−2 2π
n 2

1 + ε cos(ψ ψ′)
−
dψ , (5.37)

`2

) ∫
0

[
−

]
where the eccentricity ε =

√
1 + 2E`2 also

mk2 depends on `. There are two simple cases where

can perform this integral:

• If n = 2, then
2πhm

∆H = − , so
`T

2πhm
ω̇(1) = .

`2T

• If n = 3, then
hkm2

∆H = − 2

`3T

∫ π
dψ(1 + ε cos(ψ

0
− ψ′)), where the cos term vanishes

upon integration, so
∂

ω̇(1) =
∆H|0 6πm2hk

=
∂`

.
`4T

The latter type of potential (n = 3) is induced by corrections from general relativity to the
Newtonian potential. The Schwarzschild metric is

ds2 = −c2 S
(dτ 2 =

( r
) 1− (

c
r

)
2(dt)2 dr)2

−
1− rS

r
r

− 2(dθ)2 − r2 sin2(θ)(dφ)2 (5.38)

for rs = 2GM of
c2

where M is the central mass (say the sun), G is Newton’s gravitational
constant, and c is the speed of light. The geodesic equation for radial motion is given by

m
E =

(
dr

2

2

dτ

)
+ Veff(r) (5.39)
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2

where Veff(r) = −mc rS 2

+ `
2r

r
2mr2 − S`

2

mr3 . (More background details on the Schwarzchild metric
2

and the derivation of this geodesic equation are discussed below in the Side Note on page
102.) Defining k = GMm, then the effective potential can be rewritten as

k
Veff(r) = − `2

+
r

k`2

2mr2
− , (5.40)
c2m2r3

from which we can identify h = k`2
2 m b
c m2 . Note that h ust e treated as a constant independent

of the canonical variable ` for the purpose of the above perturbative analysis (we simply
substitute this value for h at the end).

For Mercury, T = 0.2409TEarth, ε = 0.2056, and a = 5.79 × 107 km, while GMsun =
c2

1.4766 km, so we get a precession rate of ω̇(1) = 42.98 arcseconds/century from general rel-
ativity. (An arcsecond is 1/3600’th of a second.) After removing other contributions, such
as a shift of 531.54 arcseconds/century from perturbations by other planets, the data on
mercury’s orbit shows a shift of 43.1 arcseconds/century (excellent agreement!). This was
historically one of the first tests of general relativity, and still remains an important one.

We could also consider perturbations involving momentum variables rather than coordinates.

Example Consider the relativistic correction to harmonic oscillator where the relativistic
energy

E =
√

2 p2

c4m2 + c2p2 = mc +
p4

2m
− + . . . (5.41)

8m3c2

In this case to analyze the first order perturbative correction we take

1
H = p

2m

(
2 +m2Ω2q2

)︸ ︷︷ ︸
H0

− p4

︸ 8c2m3︷︷ . (5.42)

∆H

From H0, the variables have a canonical transformation from

︸
the H-J analysis that gives

q =

√
J

sin(2π(νt+ β)) , p =
πmΩ

√
JmΩ

cos(2π(νt+ β)) . (5.43)
π

This gives
J2Ω2

∆H = − cos4 2π(νt+ β) . (5.44)
8π2c2m

˙Since J (1) is odd over one period, it turns out that

[
J is periodic

]
once again

H˙(1) ∂∆
J = −

∂β

∣∣∣∣
0

⇒ J̇ (1) = 0. (5.45)

˙Meanwhile, the change for β(1) is secular,

β̇(1) ∂∆H
=

J
=

∂J

∣∣∣∣
0

− 0Ω2

cos4

4π2mc2

[
2π(νt+ β)

]
⇒ 3J

β̇(1) = − 0Ω2

. (5.46)
32π2mc2
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Thus, β̇(1) from the relativistic correction ∆H is again a negative shift to the frequency of
the oscillator.

This ends our discussion of perturbation theory in classical mechanics.

Side Note: The Schwarzchild Geodesic from Action Minimization

The Schwarzchild metric is given by

ds2 s
= g µ

µν dxν =
( r

dx 1− dr
c

r

) 2
2t2 − (

1− rs
r

r

) − 2dθ2 − r2 sin2 θdφ2 , (5.47)

where rs = 2GM a
c2

is the Schwartzchild radius. The geodesic orbit for test particle is a curve
which minimizes proper distance with this metric. In this case, we have

µ

0 = δs = δ

∫
ds δ

∫ (
dx

= gµν
dxν

dτ

1

dτ

)
2

dτ (5.48)

where τ is the proper time and ds2 = c2dτ 2. (One method of determining the geodesic

equations is to use 0 = d2xλ µ

+
dτ2 Γλ dx

µν
dxν

dτ
with the Christoffel symbols Γλ

dτ µν determined from
the metric, but we will follow a different approach.)

The minimization in Eq. (5.48) is equivalent to applying the minimal action principal for
the Lagrangian

m
L =

dxµ
gµν

2

dxν

dτ
(5.49)

dτ

m
=

r
1

2

[(
− s dt

c
r

)
2

( 2

dτ

)
1− (

1− rs

(
dr

r

) )2

dτ
− r2

(
dθ

2

dτ

)
− r2 sin2 θ

(
dφ
)2

dτ

]
1

since the presence of the extra square root (. . .) 2 does not matter for this minimization. Here
we have the generalized coordinates xµ = (t, r, θ, φ) which are to be considered as functions
of the proper time variable τ . Also, the mass m is a test mass (which also gives us the proper
units).

Because t and φ are cyclic variables in L, we have

∂L
pt =

r
= m

∂ṫ

(
1− s dt

c
r

)
2 = Etot energy (5.50)
dτ

∂L
pφ = − dφ

= mr2 sin2 θ
˙∂φ

= ` angular momentum
dτ
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Using the E-L equation on θ we obtain

d
0 =

∂L

dτ

∂L
˙∂θ
− (5.51)
∂θ

d
=

dθ
mr

dτ

(
2 ˙mr
dτ

)
− 2 sin θ cos θφ2

where planar motion with θ = π is a solution that suffices for our purposes. Now
2

ds2 r
= c2 =

dτ 2

(
1− s

) E2

c2 tot

r m2
(
1− rs

1
2

r

)
c4
− (

1− rs

dr

r

() 2

dτ

)
− r2 `2

(5.52)
m2r4

gives a radial equation. Separating out the rest mass and expanding for E � mc2 we have:

⇒ 2
Etot = mc2 + E

(
Etot

)
≈ m2c4 + 2mc2E (5.53)

Finally,

m l
c

2

(
2

2 +
r

1
m2r2

)(
− s m

r

)
− c2︸ 2︷︷

m
+

Veff(r)

︸
dr

2

( 2

dτ

)
= E (5.54)

Note that the rest mass mc2/2 terms cancel. Therefore the effective potential is

r
Veff(r) = − smc

2 l2
+

2r

r

2mr2
− sl

2

2mr3

k
= − l2

+
r

kl2

2mr2
−
m2c2r3

where rs = 2GM and k = GMm, so mrsc
2 = 2k. This is the result that was quoted above in

c2

Eq. (5.40).
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