
Chapter 3

Vibrations & Oscillations

The topic of vibrations and oscillations is typically discussed in some detail in a course
on waves (at MIT this is 8.03). Our goal for this chapter is to revisit aspects of oscillation
phenomena using generalized coordinates. Many equations of motion we have encountered
have been nonlinear. Here, we will expand about a minimum of the potential V (q1, . . . , qn),
yielding linear equations.

Let us take qi = q0i + ηi, where ~q0 minimizes V (q), and expand in the ηi. Henceforth and
until further notice, repeated indices will implicitly be summed over. Then

∂V
V (q1, . . . , qn) = V (q01, . . . , q0n) +

1
η

∂qi

∣∣∣∣ i +
0

∂2V

2
η

∂qi∂qj

∣∣
where

∣
iηj + . . . , (3.1)

0

| ∂
0 means “evaluate the quantity at ~q0”. We already kno

∣
w that V = 0 as by

∂qi 0
definition ~q0 minimizes V (q). As a matter of convention, we choose V (q0) =

∣
0, since this

just corresponds to picking the convention for the zero of the Energy. Finally,

∣∣
we define the

constants Vij ≡ ∂2V . There is no time dependence in the definition of our generalized
∂qi∂qj

∣∣∣
0

coordinates, so the kinetic energy is

1
T =

1
mij(q1, . . . , qn)q̇iq̇j =

2
mij(q01, . . . , q0n)η̇iη̇j +

2
O(ηη̇2), (3.2)

where mij(q01, . . . , q
2

0n) ≡ Tij are constants, and terms of O(ηη̇ ) and beyond are neglected.
Thus, the Lagrangian to quadratic order in the ηis is

1
L = (Tij η̇iη̇j − Vijηiηj) . (3.3)

2

From this, the equations of motion are

Tij η̈j + Vijηj = 0 (3.4)

to the same order. These are coupled linear equations of motion.
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ˆ ˆ3.1 Simultaneous Diagonalization of T and V

To solve Eq. (3.4) lets try

η i
i = aie

− ωt (3.5)

where ai ∈ C for all i ∈ {1, . . . , n}, and the frequency ω is the same along all directions in
the generalized√ coordinate space. Notationally, i and j will denote coordinate indices, while
i = + −1 is the imaginary unit. This gives

Vijaj = ω2Tijaj (3.6)

which can be rewritten in matrix form as

V̂ · ˆ~a = λT · ~a (3.7)

with λ = ω2. This looks like an eigenvalue equation except that when we act with the linear
ˆ ˆoperator V on ~a we get back T ·~a instead of just the eigenvector ~a. This can be rewritten as

ˆ ˆ(V − λT ) · ~a = 0 (3.8)

ˆ ˆwhere V and T are real and symmetric n×n matrices. In order to have a non-trivial solution
of this equation we need

ˆdet(V − ˆλT ) = 0 (3.9)

which is an nth order polynomial equation with n solutions eigenvalues λα with α
ˆ ˆ

∈ {1, . . . , n}.
The solutions of (V − λαT ) · ~a(α) = 0 are the eigenvectors ~a(α). This means

V̂ · ~a(α) ˆ= λαT · ~a(α) , (3.10)

and the solutions are much like a standard eigenvalue problem. Here and henceforth, there
will be no implicit sum over repeated eigenvalue indices α (so any sums that are needed will
be made explicit), but we will retain implicit sums over repeated coordinate indices i & j.

There are two cases we will consider.

ˆ1) Let us start by considering the case when T is diagonal. In particular, let us consider the
even easier case proportional to the unit matrix, where Tij = mδij. This means

mη̈i + Vijηj = 0 . (3.11)

Here we have the standard eigenvalue equation

V̂ · ~a(α) = mλα~a
(α) . (3.12)
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The eigenvalues λα are real and nonnegative as λα = ω2
α; the quantities ωα are the normal

mode frequencies. The eigenvectors ~a(α) are orthogonal, and we can choose their normaliza-
tion so that

m~a(β)† · ~a(α) = δβα (or ~a(β)† · ~a(α) = δβα) . (3.13)

This implies that

ˆ ˆλ = (
α ~a(α)† · V · ~a α) (or mλα = ~a(α)† · V · ~a(α)) . (3.14)

The time-dependent eigenvectors are then

(α) (α)
~η(α) = ~a(α)e−iωαt, or ηi = ai e−iωαt. (3.15)

These are the normal mode solutions for the n coordinates labeled by i, and there are n such
solutions labeled by α. The general solution of a linear equation is a superposition of the
independent normal mode solutions:

~η =
∑

C (α)
α ~η (3.16)

α

where Cα ∈ C are fixed by initial conditions. To find real coordinate solutions, we take the
real parts of these equations.

Lets prove the statements made above. Again, there will be no implicit sum over the
eigenvalue index α. Dotting in ~a(β)† into Eq. (3.12) gives

~a(β)† · V̂ · ~a(α) = mλ ~a(β)
α

† · ~a(α) , (3.17)

ˆ ˆtaking the Hermitian conjugate of both sides, noting that V † = V , and then swapping α↔ β
ˆgives ~a(β)† · V · ~a(α) = mλ?β~a

(β)† · ~a(α). Taking the difference of these results gives

(λα − λ?β)~a(β)† · ~a(α) = 0, (3.18)

and if α = β then (λ ?
α − λα)~a(α)† · ~a(α) = 0 implies the eigenvalues are real λα ∈ R. For

λα 6= λβ, Eq. (3.18) then implies ~a(β)† · ~a(α) = 0 so the eigenvectors are orthogonal. If by
chance λα = λβ for some α 6= β then we can always simply choose the corresponding eigen-
vectors to be orthogonal. By convention, we then normalize the eigenvectors so that they

ˆsatisfy Eq. (3.13). Finally, if α = β then Eq. (3.17) now gives λα = ~a(α)† · V · ~a(α). The
statement that we are at a local minimum of the multivariable potential and not a saddle
point or a maximum implies then that λα ≥ 0 (we have positive second derivatives in each
eigenvector direction).

ˆ2) Let us now consider when T is not diagonal and summarize which parts of the result
ˆ ˆare the same and where there are differences. Here we have (V − λT ) · ~a = 0. Again, the

eigenvalues λα are real and nonnegative, with λα = ω2
α. Now, however,

~a(β)† · T̂ · ~a(α) = 0 , (3.19)
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for α 6= β, and we can replace the old normalization condition by a new one stating that

~a(β)† · T̂ · ~a(α) = δαβ, (3.20)

ˆwhich up to an overall prefactor reduces to the old orthonormality condition when T = m1̂.
Here again,

λ = ~a(α)† · V̂ · ~a(α)
α , (3.21)

and the αth normal mode solution is

~η(α) = ~a(α)e−iωαt . (3.22)

The general solution is again the superposition

~η =
∑

C (
α~η

α) , (3.23)
α

with the complex coefficients Cα fixed by the initial conditions (and a real part taken to get
real coordinates).

Lets repeat the steps of our proof for this case. Dotting ~a(β)† into Eq. (3.10) gives

~a(β)† · V̂ · ~a(α) = λ ~a(β)† · T̂ · ~a(α)
α . (3.24)

Taking the Hermitian conjugate of both sides yields ~a(β)† · V̂ · ~a(α) = λ?~a(β) ˆ
β

† · T · ~a(α).
Subtracting the two results this gives

(λα − λ?β)~a(β)† · T̂ · ~a(α) = 0, (3.25)

− ? (α)† · ˆ · (α) ∈ R ˆ ˆ? ˆand if α = β then (λα λα)~a T ~a = 0 implies λα since T = T = T> and
˙ ˆ ˙ ˙physically we know that the kinetic energy T = ~η T ~η > 0 for any ~η = 0. For λα = λβ,

then the condition instead implies ~a(β)

· · 6 6
† · T̂ · ~a(α) = 0 so the eigenvectors are orthogonal; if

by chance λα = λβ for some α 6= β then we can choose the corresponding eigenvectors to be
orthogonal. By convention, we normalize the eigenvectors so that they will be orthonormal

ˆas in Eq. (3.20). Finally, if α = β then λ = ~a(α)† · V ·~a(α)
α , which is positive, so λα > 0 also.

The statement that we are at a local minimum of the potential and not a saddle point or a
maximum implies then that λα ≥ 0.

3.2 Vibrations and Oscillations with Normal Coordi-

nates

Given these results, it is natural to ask whether a different set of generalized coordinates
might be better for studying motion about the minimum?
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We form the matrix A by placing the eigenvectors in columns

A =
[
~a(1) ~a(2) . . . ~a(n) (3.26)

ˆand construct a diagonal eigenvalue matrix λ = diag(λ1, λ

]
2, . . . , λn). The matrix A can be

ensured to be real because each ~a(α) only has at most an overall phase1, and these can be
removed by putting them into the coefficients Cα. The matrix A simultaneously diagonalizes
ˆ ˆT and V since

> ˆ 1
> ˆ ˆA TA = and A V A = λ. (3.27)

~We choose new normal coordinates ξ by letting

˙~ ˙ ~~η = Aξ and ~η = Aξ (3.28)

so that the Lagrangian

1
L =

1
~̇η

2
· T̂ · ~̇η − ˆ~η

2
· V · ~η (3.29)

1
=

˙ ˙ 1~ξ
2
· (A>T̂A) · ~ξ −

2
~ξ · (A>V̂ A) · ~ξ

=
1 ˙
2

∑
α

(
ξ2
α − ω2

αξ
2
α

)
.

This gives the simple equations of motion for each α:

ξ̈α + ω2
α ξα = 0 . (3.30)

Thus, each normal coordinate describes the oscillations of the system with normal mode
frequency ωα.

Example: Let us consider the triatomic molecule CO2 shown in Figure 3.1. We can picture it
as a carbon atom of mass M in the middle of two oxygen atoms each of mass m. For the three
particles there are 9 coordinates given by r1, r2, and r3. Six of these coordinates correspond
to translations and rotations of the mass system treated as a rigid body. This leaves 3
coordinates that correspond to internal motions of the system. To model the potential we
connect each oxygen atom to the carbon atom with a spring of constant k and relaxed
length b. This does not add any cost to relative motion of the atoms with fixed spring
length, which we will address below by adding another potential term in order to favor the
linear configuration.

It is straightforward to guess what the normal modes could be:

1 ˆWhy is it just an overall phase? The equation V · ˆ~a(α) = λαT ·~a(α) alone does not fix the normalization
(α) (α) ∈ R (α) (α)

of ~a . Let us say we pick ai for some i. Then Vkjaj = λαKkjaj is a set of equations with all real
(α) (α)

coefficients and one real term in the sums. Hence the solutions aj /ai ∈ R for all j ∈ {1, . . . , n}, implying

that at most there is an overall phase in ~a(α).
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Figure 3.1: The CO2 molecule.

• The oxygen atoms moving in the same direction along the line and the carbon atom
moving in the opposite direction. This is a longitudinal oscillation.

• The oxygen atoms opposing each other along the line while the carbon atom remains
at rest. This is a longitudinal oscillation.

• The oxygen atoms move in the same direction perpendicular to the line and the carbon
atom moving in the opposite direction. This is a transverse oscillation.

These three normal modes are shown in Figure 3.2.

Figure 3.2: The three Normal Modes of the CO2 molecule

We pick the body frame axes as follows:

• the three particles are in the xy-plane fixing 3 coordinates zi = 0 for i ∈ {1, 2, 3},

• the origin is the CM so m(x1 + x3) + Mx2 = m(y1 + y3) + My2 = 0, which fixes two
more coordinates,

• the axes are oriented so that y1 = y3, which fixes one coordinate.

Defining the mass ratio as ρ ≡ m , then x2 = −ρ(x1 +x3) and y2 = 2
M

− ρy1 can be eliminated.
Altogether this fixes 6 coordinates, leaving the coordinates (x1, x3, y1). This setup is shown
in Figure 3.3.

For the potential we take

k
V =

k
(s1

2
− b)2 +

λb2

(s2
2

− b)2 + (α2

2 1 + α2
2) . (3.31)
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Figure 3.3: The orientation of the CO2 molecule on xy plane

The first two terms are the springs discussed previously, and the last two provide a quadratic
energy cost to the springs rotating away from the linear configuration, with strength given
by λ. The spring lengths are

s1 =
√

(x1 − x2)2 + (y1 − y2)2 =
√

[x1 + ρ(x1 + x3)]2 + (1 + 2ρ)2y2
1 (3.32)

s2 =
√

(x2 − x3)2 + (y2 − y3)2 =
√

[x3 + ρ(x1 + x3)]2 + (1 + 2ρ)2y2
1 ,

and the two angles are

α1 = tan−1
( y3 − y2 (1

=
x3 − x2

)
tan−1

[
+ 2ρ)y1

,
(1 + ρ)x1 + x3

]
(3.33)

α2 = tan−1
( y2 − y1 (1

=
x2 − x1

)
tan−1

[
+ 2ρ)y1

.
(1 + ρ)x3 + x1

]
These results give V = V (x1, x3, y1). [to be continued]
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For the kinetic energy we have

m
T =

M
ẋ

2

(
2
1 + ẋ2

3

)
+

m
ẋ2

2 2 +
M

ẏ
2

(
2
1 + ẏ2

3

)
+ ẏ2

2 2, (3.34)

which after eliminating coordinates becomes

m
T = (1 + ρ) ẋ2 + ẋ2 +mρẋ ẏ2

1ẋ3 +m (1 + 2ρ) . (3.35)
2

Equilibrium

(
1 3

)
1

comes from taking y1 = 0, x3 = −x1 = b, which implies α1 = α2 = 0,
s1 = s2 = b, and V = 0. We define coordinates for expanding about this potential minimum

as η1 = x1 +b, η3 = x3−b, and η2 = y1. Then as V (−b, b, 0) = 0 in equilibrium and ∂V =
∂ηi

∣∣∣ 0
0

then V = 1Vijηiηj + . . . where
2

∂2V
Vij =

k(1 + 2ρ+ 2ρ2) 0 2kρ(1 + ρ)
= 0 2λ(1 + 2ρ)2 0 (3.36)

∂ηi∂ηj

∣ ∣∣∣
0


2kρ(1 + ρ) 0 k(1 + 2ρ+ 2ρ2)



for this system. Additionally,



mρ
T =


m(1 + ρ) 0

ij
 0 2m(1 + 2ρ) 0

mρ 0 m(1 + ρ)


(3.37)

for this system. Since there are no off-diagonal terms in the 2nd ro


w or 2nd column in either

ˆ ˆV or T , the transverse and the longitudinal modes decouple. For the transverse mode, we
are left with

2λ(1 + 2ρ)2

ÿ1 + y1 = 0 , (3.38)
2m(1 + 2ρ)

which is a simple harmonic oscillator. For the longitudinal modes, we have ~η = (η1, η3). The
frequencies come from[

k(1 + 2ρ+ 2ρ2)− λm(1 + ρ) 2kρ(1 + ρ) λmρ
det

−
= 0 (3.39)

2kρ(1 + ρ)− λmρ k(1 + 2ρ+ 2ρ2)− λm(1 + ρ)

]
The solutions give the normal mode frequencies

k
λ1 = ω2

1 = , 2 k
λ2 = ω

m 2 = (1 + 2ρ) , (3.40)
m

with associated eigenvectors

~a(1) 1
= √

(
1

2m −1

)
, ~a(2) 1

= √
)

(
1

(3.41)
2m(1 + 2ρ 1

)
,

which were chosen to satisfy ~a(α) · T̂ · ~a(β) = δαβ. Thus, the normal coordinates for the
longitudinal modes are ξ1 ∝ x1 − x3 and ξ2 ∝ x1 + x3. Oscillations in these coordinates
correspond to the normal mode motions in Fig. 3.2(b) and Fig. 3.2(a) respectively.
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