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Final Exam, Solutions

Problem 1 (20 points) Binary Alloy

a) Find the number of different ways of choosing the n a-sites to be vacated and occupied

by £ atoms. v
Ho = m
b) Find the number of different ways of choosing the n (-sites from which to take the [
atoms. A
s = AN =)

c) Find the entropy of the system as a function of n.

N
S(n) = kpInQ = kpln(#, x #5) = 2kpIn <m>

d) Find U(T, N).

S(n) =2kg[NInN —nlnn — (N —n)In(N —n) — N +n+ (N —n)]
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Solving for n gives




Problem 2 (20 points) DNA Model

a) This is a classical system with N non-degenerate states with energies £, = ne.

N
Zl _ § e—ne/szT
n=0

b) When kT < € one need consider only the lowest two energy states; this becomes an
energy gap dominated situation.

N
—ne/kpT
€
(ny = Z n——p—
n=0
0 e 0 41 e—e/k’BT e—e/k’BT
~ e 0 _|_€—e/kBT - 1_|_e—€/kBT

~ e—E/kBT

¢) When kgT > € one can approximate sums over n by integrals. For example
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d) In a similar manner
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Alternatively use Z; = 1/(fe).
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Problem 3 (20 points) Spin Waves

a)
L,L,L. V

D(k) =
(%) 2 2w 2 (2m)3

#(w) = (volume of sphere in k-space) x D(k)
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d) There is no energy gap behavior (Cy oc T"e~2/#8T) because of the integration over a

continuous distribution of gaps (A = Aw), some of which are less than kgT for any physical
T.



Problem 4 (20 points) Graphene

a)
L,L, A

®:%ﬁ (27)?

b)
#(e) = 2 x (area of disk in k-space) x D(k)
A €
= 2X WkQ(E)W use k= %
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d)

w(T = 0) rests at the last filled state at 7" = 0 which is at the top of the valence band, so
w(T=0)=0.

D(e) is symmetric about € = 0. If u stays at € = 0 the symmetry of (n(e, T")) assures that
as T increases the number of electrons lost from the valence band is exactly equal to the
number of electrons appearing in the conduction band. Thus p(7) =0 for all T covered by
this model.



f)

Ca(T) = (0U/OT) 4 so Ca(T) will be proportional to T?, that is the temperature exponent n = 2.




Problem 5 (20 points) BEC

a)
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b) Bose-Einstein condensation begins when the above condition is satisfied with x = 0 which
also means our dimensionless parameter y = 0.

V[ 2mkgT.\?
HCZH( 72 ) I(y=0)

c)
dU =TdS — PdV + udN; change independent variables to T, V, N:

as=50 ary B gy
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So 8U/8N|V’T = ,U/—FT(?S/(?N|T’V

T,N

Now use Maxwell relation derivable from dF = ... on the information sheet: 0S/ON|ry =
—0u/0T |7 n. SO
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In the Bose condensed phase 1 = 0 and is independent of the temperature, so both terms in

OU/ON are zero.



d)
From answer to part a)

n = L <2mk)3/2T3/2 /OO \/de C x gBB/Z — /OO \/de
0 0

 4p2 h? el@=y) — 1 elz=y) — 1

where C' is a collection of constants.

Differentiate this equation implicitly w.r.t. 5 and y = ug,

3 N i /°° el@=v) dy
Zw = = dp——— | £
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Both the term on the left and the term in () are positive definite. Thus dy/dS > 0.
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