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Problem 1 (20 points) Binary Alloy

a) Find the number of different ways of choosing the n α-sites to be vacated and occupied
by β atoms.

N !
#α =

n!(N − n)!

b) Find the number of different ways of choosing the n β-sites from which to take the β
atoms.

N !
#β =

n!(N − n)!

c) Find the entropy of the system as a function of n.

N !
S(n) = kB ln Ω = kB ln(#α ×#β) = 2kB ln

(
n!(N − n)!

)

d) Find U(T,N).

S(n) = 2kB [N lnN − n lnn− (N − n) ln(N − n)−N + n+ (N − n)]

1
=

T

(
∂S

∂U

)
=

N

(
∂S

∂n

)
N

(
∂n 2kB

= [ 1 lnn+ 1 + ln(N n)]︸ ∂U
)
N

−︷︷
/ε

︸ ε
− −

1

ε n n
=

2kBT
− ε/ln

(
N − n

)
→ = e

N − n
− 2kBT

Solving for n gives

N Nε
n =

ε/2kBT
→ U(T,N) =

ε/2kBT1 + e 1 + e
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Problem 2 (20 points) DNA Model

a) This is a classical system with N non-degenerate states with energies En = nε.

N

Z =
∑

e−nε/kBT1

n=0

b) When kT � ε one need consider only the lowest two energy states; this becomes an
energy gap dominated situation.

N
e−nε/kBT〈n〉 =

∑
n

Z
n=0

0 e−0 + 1 e−ε/kBT e−ε/kBT≈ =
e−0 + e−ε/kBT 1 + e−ε/kBT

≈ e−ε/kBT

c) When kBT � ε one can approximate sums over n by integrals. For example

N

Z =
∑ N

k T
e−nε/kBT

kBT ε BT
∞ kB

= e−nε/kBT e−x dx =
ε kBT ε 0 ε

n=0

( )∑
n=0

( )
≈

∫
︸ ︷︷

1

︸
d) In a similar manner

〈n〉 =
∑N e−nε/kBT

n
Z

n=0∑N
T

) N
nε nε/k

(
kBT ∑ nε nε/k ε

= e− B = e− BT

kBT ε kBT

(
kBTn=0 n=0

)
k≈ BT

ε

∫ ∞
xex dx︸0 ︷︷
1

k

︸
≈ BT

ε

Alternatively use Z1 = 1/(βε).

< U > 1 1 ∂Z〈n〉 = =
− 1

=
−1 −Z kBT

=
ε ε

(
Z ∂β

)
ε

(
Z

)(
β

)
ε
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Problem 3 (20 points) Spin Waves

a)
L L~ x y Lz V

D(k) = =
2π 2π 2π (2π)3

b)

~#(ω) = (volume of sphere in k-space)×D(k)

4 V
= πk3(ω) use k = (ω/a)1/2

3 (2π)3

V
=

6π2

(ω
a

)3/2

d#(ω) V
D(ω) = = a−3/2 ω1/2

dω (2π)2

D(ε)

ε0

c) ∞
U =

∫
0

〈ε(ω)〉D(ω) dω

V
= a−3/2

(2π)2

∫ ∞ ~ω
ω1/2 dω + Z.P. contribution

0 (e~ω/kBT − 1)( )3/2
V 1 5/2

∫ ∞ x3/2

= (k
(2π)2 ~ BT ) dx + Z.P. contribution

a ︸0 ex︷︷− 1

≡ I
︸

( 3
∂U
)

5
( /2
kBT

CV (T, V ) = = kBV I
∂T V 8π2 ~a

)

d) There is no energy gap behavior (CV ∝ T ne−∆/kBT ) because of the integration over a
continuous distribution of gaps (∆ = ~ω), some of which are less than kBT for any physical
T .

3



Problem 4 (20 points) Graphene

a)
L~ x Ly A

D(k) = =
2π 2π (2π)2

b)
#(ε) = 2× ~(area of disk in k-space)×D(k)

A ε
= 2× πk2(ε) use k =

(2π)2 ~v
2

A 1
= ε2

2π

(
~v

)
d#(ε) A

Dc(ε) = =
dε π

(
1

~v

)2

ε

c)

D(ε)

ε0

d)

µ(T = 0) rests at the last filled state at T = 0 which is at the top of the valence band, so
µ(T = 0) = 0 .

D(ε) is symmetric about ε = 0. If µ stays at ε = 0 the symmetry of 〈n(ε, T )〉 assures that
as T increases the number of electrons lost from the valence band is exactly equal to the
number of electrons appearing in the conduction band. Thus µ(T ) = 0 for all T covered by
this model.
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e)

U =

∫ ∞
ε 〈n(ε, T )〉D(ε) dε

−∞

= 2

∫ ∞
ε 〈n(ε, T )〉Dc(ε) dε

0

A
=

π

(
1

~v

)2 ∫ ∞ 1
ε2 dε

(eε/kBT0 + 1)

A 2

=

(
1
)2

(k T )3
∞

π ~v

∫
x

B dx
0 (ex + 1)

≡ I
2

A 1
= (

︸ ︷︷ ︸
π

(
~v

)
kBT )3 I

f)

C 2
A(T ) = (∂U/∂T )A so CA(T ) will be proportional to T , that is the temperature exponent n = 2.
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Problem 5 (20 points) BEC

a)

N =

∫ ∞
< n > D(ε) dε

0∫ ∞
T

[
3/2

1 V 2m
=

0 e(ε−µ)/k

√
ε dε

B − 1 (2π)2

(
~2

) ]
V

=
4π2

(
2m

~2

)3/2 ∫ ∞ √
ε

dε
e(ε−µ)/kBT

0 − 1

V
= dx

4π

( 3/2
2mkBT

∞ √
x

2 ~2

) ∫
e(x y)

0
− − 1

≡ I(y)

3/2
V
(

2mkBT

︸ ︷︷ ︸
n =

4π2 ~2

)
I(y)

b) Bose-Einstein condensation begins when the above condition is satisfied with µ = 0 which
also means our dimensionless parameter y = 0.

V
( 3/2

2mkBTc
nc =

4π2 2

)
I(y = 0)

~

c)

dU = TdS − PdV + µdN ; change independent variables to T, V,N :

∂S
dS =

∣∣∣ ∂S ∣∣ ∣ ∂S
dT +

∣∣ dV + dN
∂T T,V ∂V T,N ∂N

∣
T,V

So ∂U/∂N |V,T = µ+ T ∂S/∂N

∣∣
|T,V .

∣

Now use Maxwell relation derivable from dF = ... on the information sheet: ∂S/∂N |T,V =
−∂µ/∂T |T,N . so

∂U
∣∣ ∂

∣∣ µ ∣∣ 2 ∂ µ
=

N ∣ µ T = T
∂ V,T

−
∂T N,V

−
∂T T

∣∣∣ ∂(βµ)
∣∣

In the Bose condensed phase µ = 0 and

∣
is

∣ =
N,V ∂β ∣∣

N,V

independent of the temperature, so both terms in
∂U/∂N are zero.
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d)

From answer to part a)

3/2
1
(

2mk
)

3/2

∫ ∞ √
x dx N ∞ √

x dx
n = T C × β3/2 =

4π2 ~2 (
0 e(x−y) − 1 V

∫
0 e x−y) − 1

where C is a collection of constants.

Differentiate this equation implicitly w.r.t. β and y = µβ,

3 N (x y)

× β1/2
∞

=

(∫ √ e − dy
xdx

2 V 0 (e(x−y) − 1)2

)
dβ

Both the term on the left and the term in () are positive definite. Thus dy/dβ > 0.
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