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8.022 (E&M) – Lecture 4 

More applications of vector calculus to electrostatics: 

Laplacian: Poisson and Laplace equation 

Curl: concept and applications to electrostatics 

Introduction to conductors 
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Last time… 
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Work done to move a unit charge from infinity to the point P(x,y,z) 

It’s a scalar! 

Energy associated with an electric field: 

Work done to assemble system of charges is stored in E 

Gauss’s law in differential form: 

Easy way to go from E to charge d stribution that created 

   w ith E  ds  

Volume Entire
  with space 
charges 

r  dV  dV  
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Laplacian operator 
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What if we combine gradient and divergence? 
Let’s calculate the div grad f (Q: difference wrt grad div f ?) 

Laplacian Operator ≡ ∇  ∇

≡ ∇  
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Interpretation of Laplacian 
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Given a 2d function (x,y)=a(x )/4 calculate the Laplacian 

As the second derivative, the Laplacian 
curvature of the function 
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Poisson equation 

Let’s apply the concept of Laplacian to electrostatics. 
� Rewrite Gauss’s law in terms of the potential 

G

⎧∇i = 4πρ
⎪
⎨ G

⎩ i( 2
⎪∇i = ∇  −∇φ) = −∇  φ 

2→ ∇ φ = −  4πρ Poisson Equation 
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E

E 

Laplace equation and Earnshaw’s Theorem 

�	 What happens to Poisson’s equation in vacuum? 

2	 2∇ = −  4πρ ⇒ ∇ = 0     Laplace Equation φ	 φ 

�	 What does this teach us? 
In a region where φ satisfies Laplace’s equation, then its curvature 
must be 0 everywhere in the region 

Æ The potential has no local maxima or minima in that region 

�	 Important consequence for physics: 
Earnshaw’s Theorem: 

It is impossible to hold a charge in stable equilibrium with 

electrostatic fields (no minima) 
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C
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Is the equilibrium stable? No! 

(does the question sound familiar?) 
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Application of Earnshaw’s Theorem 

8 charges on a cube and one free in the middle. 
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The circulation 
� F 
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� 1 and C2

C 
F dsΓ =  ∫ 
G Giv 

C2 

C1 

C’ 

C’ 

1 2 

1 2 

1 2 

' ' 

' ' 

C 

C C C C 

C C 

F ds 

F ds s 

F ds  F ds  

− − 
Γ =  =  +  =  

− + + 

= + 

∫ ∫ ∫ 
∫ ∫ ∫ ∫ 

∫ ∫ 

G G GG G Gi i i 
G G G GG G G Gi i i i 
G GG Gi i 

v v v 
v v v v 
v v 1 2 

Consider the line integral of a vector function over a closed path C:  

Let’s now cut C into 2 smaller loops: C
Let’s write the circulation C in terms of the integral on C

    Circulation 

C  C  C  C  
F ds F ds 

F d F ds F ds 

⇒ Γ = Γ  + Γ  
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The curl of F 
� If we repeat the procedure N times: 

� F as circulation of F in the limit AÆ0 

� 
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Define the curl of per unit area 

where A is the area inside C 

The curl is a vector normal to the surface A with direction given by 
“right hand rule” 
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Stokes Theorem 

F over a closed line C and the 
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NB: Stokes relates the line integral of a function 
of the function over the area enc

LargeN LargeN LargeN 

LargeN 

LargeN LargeN 

In the limit  0: curl  and  

curl F n  F  A F A  

Γ  =  

argeN 

curl 

(definition of circulation)

curl Stokes Theorem F dA 
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Application of Stoke’s Theorem 

Stoke’s theorem: 

The Electrostatics Force is conservative:  

The curl of an electrostatic 

curl F dA 

for any surface A 

= 0 
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Consider infinitesimal rectangle in yz plane 
centered at P=(x,y,z) in a vector filed 
Calculate circulation of around the square: 

s  F  x y z  y  F  x y z  

s  F x y  z  z  F x y z  

s  F  x y z  x y z  

s  F x y  F x y z  

−  ∆  
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squareYZ 

Adding the 4 compone nts: 

F y 

y z 

∂ ∆ 

∆  ∆  
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Curl in cartesian coordinates (2) 
� Combining this result with definition of curl: 
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Similar results orienting the rectangles in // (xz) and (xy) planes 
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electrostatics (1) 

In E&M: 

Gauss’s theorem: 

In E&M: Gauss’ aw in different al form    

Stoke’s theorem: 

In E&M: 

= − ∇  

EdV 

curl 

curl 
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Summary of vector calculus in 

� Laplacian: 

� In E&M: 
� 

� 

� l
with electrostati

2φ φ∇ i 

Purcell Chapter 2 

2 4φ πρ 

2 0φ∇ = 
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electrostatics (2) 

Poisson Equation: 

Laplace Equation: 

Earnshaw’s theorem: impossib e to hold a charge in stable equilibrium 
c fields (no local minima) 

≡  ∇  ∇  

∇ = −  

Comment: 
This may look like a lot of math: it is! 
Time and exercise will help you to learn how to use it in E&M 

Conductors and Insulators 

Conductor
� 

� 2O 

Insulator
� 

� Inorganic materials: quartz, glass,… 

Au 
Free 

electrons 

Na+ 

Cl
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: a material with free electrons 
Excellent conductors: metals such as Au, Ag, Cu, Al,… 
OK conductors: ionic solutions such as NaCl in H

: a material without free electrons 
Organic materials: rubber, plastic,… 
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Electric Fields in Conductors (1) 

� 
� 

� E=0 
� Why? If E Æ i
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A conductor is assumed to have an infinite supply of electric charges 
Pretty good assumption… 

Inside a conductor, 
is not 0 charges w ll move from where the potential is higher to where 

the potential is lower; m gration will stop only when E=0. 
How long does it take? 10 -10 cal resist vity of metals) 

Electric Fields in Conductors (2) 

� Electric potential inside a conductor is constant 
� 1 and P2 the ∆φ would be: 
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P 

P 
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� Net charge can only reside on the surface 
� Æ 

� External field li
� ∆φ=0 

� 
� 
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Given 2 points inside the conductor P
 since E=0 inside the conductor. E ds  

If net charge inside the conductor Electric Field .ne.0  (Gauss’s law) 

nes are perpendicular to surface 
E// component would cause charge flow on the surface until 

Conductor’s surface is an equipotential 
Because it’s perpendicular to field lines 
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Corollary 1 

φ

Why? 
� 
� If no charge inside the cavity Æ lds Æ φ

or minima 
Æ φ Æ E=0 

� Shielding of external electric fi

E=0 
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In a hollow region inside conductor, =const and E=0 if there aren’t any 
charges in the cavity 

Surface of conductor is equipotential 
Laplace ho cavity cannot have max 

must be constant 
Consequence: 

elds: Faraday’s cage 

Corollary 2 

l
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A charge +Q in the cavity wil  induce a charge +Q on the outside of the 

App y Gauss’s aw to surface - - - ins de the conductor  

0 because E=0 inside a conductor

Gauss's law

conductor is overall neutral
inside 

inside outside inside 

E dA  

E dA  Q  Q  
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Corollary 3 

σ =E /4π 

Why? 
� ∆E=4πσ 

� Since Einside=0 Æ E =4πσ

σ 

+Q 

-

-
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-
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The induced charge density on the surface of a conductor 
caused by a charge Q inside it is induced surface

For surface charge layer, Gauss tells us that 

surface induced 

Uniqueness theorem 

ρ
potential φ ion φ i

� φ1 and φ2 i : 

� φ1 and φ2 φ1 = φ2 =φ 

� φ1and φ2 will i
φ3 = φ2 – φ1: 

� φ3 l
� φ3=0 Æ φ3

Æ φ1 = φ2 

2 2 2 
3 2 1( )  ( )r r r r rφ φ φ πρ πρ∇ = − = 
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Why do I care? 
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Given the charge density (x,y,z) in a region and the value of the electrostatic 
(x,y,z) on the boundaries, there is only one funct (x,y,z) wh ch 

describes the potential in that region.  
Prove: 

Assume there are 2 solutions: ; they w ll satisfy Poisson

Both satisfy boundary conditions: on the boundary, 
Superposition: any combination of  be solution, includ ng 

satisfies Lap ace: no local maxima or minima inside the boundaries 
On the boundaries =0 everywhere inside region 

everywhere inside region 

( )  4  ( )  4  ( )  0  =  ∇  −  ∇  

( )  4  

( )  4  ( )  

A solution is THE solution! 
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Uniqueness theorem: application 1

� A hollow conductor is charged until its external surface reaches a 
potential (relative to infinity) φ=φ0. 
What is the potential inside the cavity? 

+
+

+

+

+
+

+

+

φ0φ=?

Solution
φ=φ0 everywhere inside the conductor’s surface, including the cavity.

Why? φ=φ0 satisfies boundary conditions and Laplace equation 
Æ The uniqueness theorem tells me that is THE solution. 
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Uniqueness theorem: application 2

� Two concentric thin conductive spherical shells or radii R1 and R2 
carry charges Q1 and Q2 respectively. 
� What is the potential of the outer sphere? (φinfinity=0)
� What is the potential on the inner sphere? 
� What at r=0? 

R1

R2

Q1

Q2

1 1
2 2 2

2 1 2
1 22 2

2 1
2 2 2

2 1

 Because of uniqueness: ( )

R R

R R

Q Q QE ds dr
r R R

Q Q r r R
R R

φ φ

φ φ φ

− = − = − = −

⇒ = + = ∀ <

∫ ∫
G Gi

Solution
� Outer sphere: φ1=(Q1+Q2)/R1

� Inner sphere 
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Next time… 

� More on Conductors in Electrostatics 
� Capacitors 

� NB: All these topics are included in Quiz 1
scheduled for Tue October 5: just 2 weeks from now!!! 

� Reminders: 
� Lab 1 is scheduled for Tomorrow 5-8 pm
� Pset 2 is due THIS Fri Sep 24


