
Topics: 

� part of the course? 

� 

� Power and energy 

� Filters 

8.022 (E&M) – Lecture 18 

RCL circuits: the hardest of the easiest 

More on complex impedance 
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Last time: AC driven RCLs 

Simple solution when introducing following rules: 
th complex V and I 

Real currents and voltages are just the real part of the 

Generalization of Ohm’s law to complex V and I: 

Analyze circuit as if it were DC with only resistors 

Take the real part of I(t) and V(t) 

V and I. 

I  t Z  

where Z  is the  of componen 

Z  = R  

mpedance t X: 
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“Analyze as DC with only resistors” 

� 

� 

I1Z1=V1; I2Z2=V2; V1+V2

Æ Zeq=Z1+Z2 

� 

� 

� V1/Z1=V2/Z2=V/Zeq; V1=V2=V 

Æ 1/Zeq=1/Z1+1/Z2 
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What do I mean with this statement? 
Impedances in series 

Same current flowing in each element 

=V; V=ZI 

Impedances in parallel 

Same voltage drop across each element 

Same rules as resistors in series and parallel! 
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Is the current leading or lagging? 
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Instead of thinking of the problems in terms of complex 
currents, think in terms of complex impedance!  

Generalized Ohm’s law: 

All what we really care about is amplitude of I and relative 
phase between I and V 

Trick: let’s choose V real (no law against it!) and draw the 
complex I, V and Z in the complex plane 

I  t Z  

I=|V|/|Z| 

2




5 

Is current leading or lagging? (2) 

� l

� Imaginary part: ZL “pulls up” by ω C pull ωC 
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Consider the complex impedance:   

Real part: on y R contributes 

L and Z s down by 1/

The phase of Z will depend on who prevails: 

Re  ( )  Im  ( )  

Im( 
Re( 
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Is current leading or lagging? (3) 
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Now remember that          and that we chose a real V: I  t Z  

V  t  >0, I will be lagging V

<0, I will be leading V 
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Power in RCL circuits 
� 

� Given 

� 

� NB: when we say light bulb has a P of 100W we are referri

� α−β)=cosαcosβ αsinβ 
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Power delivered in a circuit is 

The average power over a period T will be   

ng to <P> 

Using the identity: cos( +sin we obtain: 
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Power in RCL circuits (2) 

� Since: 

� 

� φ=0 Æ i i Æ 

� φ=0 when φ o Æ 

� Introducing: 
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NB: Power depends on relative phase between I and V 
cos no power diss pated in the c rcuit no work done! 
cos = 90 when Z is purely imaginary: R needed! 

RMS (root mean squared) voltage and currents: 

NB: in the US: outlet voltage s 120 V. This is the RMS voltage: Vmax=170 
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Power vs. frequency 
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NB: Z depends on power dissipated depends on driving frequency! 

is P is max?  

What 

What is the corresponding phase? 
Zero: the imaginary part due to C and L exactly cancel out! 
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ω0 in term of L and C 
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What does ω=ω mean in terms of L and C? 
Remember: 

Back to the phasor representation for Z 

compensates the one due to L 
Z is purely real! 
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How good is the resonant system? 

� 

� Width: ∆ω 

power goes to Pmax/2: ω1 ω2 
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Definition: width of resonance wrt the height 
between the points where the 
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Application: FM antenna 

� L=8.22 µH 
� -12 F 
� Ω 

VRMS=9.13 µV 
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Consider the following circuit:  

C=0.27 pF=0.27x10
R=75 

The radio signal in the air induces an alternated emf in the antenna: 

Find frequency of incoming wave for which antenna is in tune 

Resonance frequency: 6.7 

106  YES, FM  rad o!  πν  
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Application: FM antenna (cont) 

� L=8.22 µH 
� -12 F 
� R=75 Ω 

� VRMS=9.13 µV 

� Calculate I

� ∆VRMS 
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C=0.27 pF=0.27x10

RMS 

across C 

RMS : at resonance |Z |=R) RMS RMS 

RM  

MS  Quest on: V =0.66 

V =I  

 mV wh e V =9 V. How 

 0.66 

can th s happen? 

L and C cancel a most perfect Z can be sma  wh e C and L 
are large and Z~rea . NB: a rcu ts w th good Q value have this feature! 
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Application: FM antenna (cont) 
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� Q factor 
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Calculate width of resonance 

9 10 1.4 

Q: is this a good antenna? 

⇒∆  

Can we ncrease L? No, t wou d change frequency
 decreasing R s the so ut on 

 73 good but not enough for a radio. 

How can this be improved? 

No, since separat on between stat ons s ~ 0.2 MHz 
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Low pass RL filter 
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RCL circuits have a frequency dependent response: they can act as 
filters (select only certain frequencies) 
Example: RL circuit 

Calculate the complex current 

R i  L  

R i  L  

0 : V  
low pass f ter 
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High pass RL filter 
� L 

� Same complex current 
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What if we take the voltage V across the inductor? 
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Low pass RC filter 
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Demo on filters 
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Let’s now study the voltage across a capacitor of a driven RC circu
The complex current is now: 

0 : V  
low pass filter 
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High pass RC filter 
� R 

� Same complex current 
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What if we take the voltage V across the resistor? 

0 : V  
gh pass f te 
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Summary and outlook 

� Today: 
� End of RCL circuits 

� 

� 

� 

� Next time: 
� 

� 
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Some tricks to make RCL calculations easier 

Power dissipated in RCL circuits 

Antennas and high and low pass filters  

Back to Maxwell’s equation: 
The missing ingredient!  
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