Massachusetts Institute of Technology Department of Physics – Physics 8.022 – Fall 2002

Prof P. Fisher

Prof E. Katsavounidis

Electrostatics Formulae for Quiz #1

Conservative Field: $\int_C \vec{F} \cdot d\vec{r} = 0$ for any closed path C, $W_{ab,C} = W_{ab,C'}$ for any C, C' connecting a and b, $\vec{F} = -\vec{\nabla}U$, $\vec{\nabla} \times \vec{F} = 0$

<u>Coulomb Law:</u> $\vec{F}_{21} = \frac{q_1 q_2}{r^2} \hat{r}_{21}$ for two point charges at distance r. $\vec{F}_{12} = -\vec{F}_{21}$, and for charges dq_1 and dq_2 that make part of continuous charge distributions 1 and 2, $d\vec{F}_{21} = \frac{dq_1 dq_2}{r^2} \hat{r}_{21}$

<u>Electric Field:</u> at point 2 due to q_1 $\vec{E}_1 = \frac{q_1}{r^2}\hat{r}_{21}$. If q_1 is not a point charge but part of a continuous distribution, $d\vec{E} = \frac{dq}{r^2}\hat{r}$

<u>Principle of Superposition:</u> Two or more electric fields acting at a given point P add vectorially: $\vec{E}_P = \vec{E}_1 + \vec{E}_2 + ... + \vec{E}_n$

Electrostatic Field is Conservative: $\vec{\nabla} \times \vec{E} = 0$ and thus there exists scalar function ϕ such that $\vec{E} = -\vec{\nabla} \phi$ where $d\phi = \frac{dq}{r}$

Electrostatic potential: The potential at \vec{x} with respect to a ref point is $\phi(\vec{x}) - \phi(ref) = -\int_{ref}^{\vec{x}} \vec{E} \cdot d\vec{r} = -\frac{W_{ref} \to \vec{x}}{q}$

Gauss Law: $\int_S \vec{E} \cdot d\vec{a} = 4\pi \int_V \rho dV$ where S is a closed surface and V is its corresponding volume (integral form) or $\vec{\nabla} \cdot \vec{E} = 4\pi \rho$ (differential form).

Poisson Eqn: $\nabla^2 \phi = -4\pi \rho$, Laplace Eqn: $\nabla^2 \phi = 0$

Energy: $U = \frac{1}{2} \int_{V} dV \int_{V'} dV' \frac{\rho(\vec{x})\rho(\vec{x}')}{|\vec{x} - \vec{x}'|} = \frac{1}{2} \int_{V} \rho \phi dV = \frac{1}{8\pi} \int_{V} E^{2} dV$