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22.903 Home Work Set No. 1 (Professor Sow-Hsin Chen) Spring Term 2005.  Due March 7, 2005 
 

 
1. This problem concerns calculations of analytical expressions for the self-intermediate scattering 

function (ISF) of the test particle in a liquid which captures both the short-time and the long-time 
behavior of the function correctly. 

 
In the classical limit the self-ISF in the Gaussian approximation is given by 
 

Fs (Q,t) = eiQ X (t)−X (0)[ ] = eiQ∆X (t ) = e
−1

2
Q2 ∆X (t )( )2

= e
−1

2
Q2W (t )

  (1) 

 
where the width function W(t) is defined by 
 

W(t) = ∆X(t)( )2 = dt1
0

t
∫ dt2

0

t
∫ Vx (t1)Vx (t2) = 2 dt' t − t'( ) Vx (0)Vx (t')

0

t
∫ .   (2) 

 
(a) Show that Eq.(2) is valid when the velocity auto-correlation function Vx (t1)Vx (t2 )  depends 

only on the time difference t’ = t1- t2, such as in a steady state. 
 
(b) Define the normalized velocity auto-correlation function  

 

ψ(t) =
Vx (0)Vx (t)

Vx
2

,   where  Vx
2 = V0

2 = kBT
M

     (3) 

 
and its Fourier transform (the density of states function) 

 

ψ(ω) = 1
2π

dteiωt

−∞

∞

∫ ψ(t) = 1
π

dt cosωtψ(t)
0

∞

∫ .     (4) 

 
Show that (by using Eq.(2) and Eq.(4)) the width function can be written as 
 

W(t) = 4V0
2 dω

1− cosωt
ω2

0

∞
∫ ψ(ω) .        (5) 

 
(c) Show that if the velocity of the test particle satisfies the Langevin equation, then the normalized 

velocity auto-correlation function is given by 

ψ(t) = e
− t

τ .           (6) 
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Calculate the width function W(t) and give its short-time and long-time limits. Relate the 
relaxation time τ to the friction constant of the test particle in the liquid. Give also the density of 
states function in this case. 

 
(d) By examining long time behavior of the width function, derive the general relationships between 

the diffusion constant D of the test particle and the normalized velocity auto-correlation function 
ψ(t). Give also the relation between D and the density of states function ψ(ω). 

 
 
(e) The Brownian particle model given above is a one-parameter model in which the parameter is 

the relaxation time τ. It gives the short time and the long time limits of the self-ISF correctly. 
One can formulate a more advanced model, call the relaxing cage model of Desai and Yip 
(Physical Review 166, 129 (1968)). This model is a two-parameter model in which the density of 
states function is modeled as 

 

ψ(ω) = 2
π

ω0
2 /τ 0

ω 2 −ω 0
2( )2

+ ω /τ 0( )2
.       (7) 

 
Show that the normalized velocity auto-correlation function is given by 
 

ψ(t) = dω cosωtψ(ω) = e
− t

2τ 0

0

∞

∫ cosΩt + 1
2τ 0Ω

sinΩt
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥    (8) 

 

where Ω2 = ω0
2 − 1

4τ 0
2 . 

 
(f) Give the expression of the width-function. Check its short-time and long-time behavior. You 

shall find that this model describes the motion of the test particle as a vibrational one with a 
characteristic frequency ω0 at short time, and a diffusional one with a frictional coefficient 

ω0
2τ 0  at long time. In terms of a typical atom in a liquid, the picture corresponds to putting the 

atom in an external parabolic potential well which relaxes in time so that eventually the atom 
diffuses away experiences only the frictional force. Thus it is appropriate to call it a relaxing 
cage model. 
 
 
 
 
 
 
 
 

 2



 3

2. The objective of this problem is to calculate the total cross section of scattering of cold neutrons 
from hydrogen molecules in gas phase where inter-molecular correlation effect can be neglected. 
 
(a) If we denote the neutron and nuclear spin operators respectively by  ˆ s  and  ˆ , the scattering 

length operator 

i 
b̂ can be written as: 

 

îŝBAb̂ ⋅+=          (9) 
 

 where A and B are constants to be determined. Now denote the total spin operator (sum of the 

neutron and nuclear spins) by îŝt̂ += , and noting the operator relationship 
 

   ( 222 ŝît̂
2
1îŝ −−=⋅ ) ,       (10) 

 
which has an eigen value of  
 
1
2

t(t + 1) − i(i + 1) − s(s + 1)[ ]=
1
2

t(t + 1) − i(i + 1) −
3
4

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ .  

By demanding that the b̂  operator has an eigen value 
2
1it  when  b +=+ , and an eigen value 

2
1it  when  b −=− , obtain the following values for the two constants: 

 

 A =
i + 1
2i + 1

b+ +
i

2i + 1
b− = bcoh    and   B =

2
2i + 1

b+ − b_( ).    (11) 

 
 (b) Now turn our attention to scattering of cold neutrons of wave length 5 A (energy ~ 2 meV) which 

is larger than the inter-nuclear separation of 0.74 A in a hydrogen molecule. As a result, the spatial 
interference effect due to the two hydrogen atoms in a molecule can be neglected in the calculation 
of scattering cross sections. We can calculate the differential scattering cross section by the formula 

 

 

  

dσ
dΩ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

λ'

λ
=

k '
k

λ ' ˆ b ξ exp(i
G 
Q ⋅

G 
R ξ ) λ

ξ
∑

2

      (12)  

 
 where λ  and  λ ' denote the initial and the final states of the molecule in the scattering process, and 

the index ξ  runs over 1 and 2 hydrogen atoms in the molecule. Since we can neglect the special 
correlation due to the finite separation of the two protons in a molecule, the exponential factor in the 
matrix element can be put equal to unity. In order to get the measured differential scattering cross 
section, we further sum over the final states λ '  in Eq.(12) to obtain 
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dσ
dΩ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

λ
=

k '
k

λ ( ˆ b 1 + ˆ b 2)+ ( ˆ b 1 + ˆ b 2 ) λ        (13) 

 
The relevant initial state of the molecule and the neutron is sI m,sm,I=λ , where the first 

factor represents the total spin state of the molecule, . By using the scattering length 
operator given in Eq.(9) for the 1 and 2 protons, you can calculate the matrix element in Eq.(13). 

21 îîÎ +=

Show that 
 

( ) 22222
2121 ÎB

4
1Îŝ)B

2
1AB4(A4IŝBA2)b̂b̂()b̂b̂( +⋅−+=⋅+=++ +  (14) 

 
(d) In order to obtain the result of Eq.(14), you need to show the operator relation: 

 

 ( ) Îŝ
2
1Î

4
1ŝÎ 22

⋅−=⋅          (15) 

 
(e) Substitute the result of Eq.(14) into Eq.(13) and calculate the matrix element by assuming an 

unpolarized incident neutron beam, show that 
 

dσ
dΩ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

unpol
=

k '
k

4A2 +
1
4

B2 I(I + 1)
⎡ 
⎣ ⎢ 

⎤
⎦⎥
       (16) 

  
(f) There are two kinds of molecular hydrogen. When the two nuclear spins of the two protons are 

parallel, it is in the ortho-state (I = 1). On the other hand, when the two spins are anti-parallel, it 
is in the para-state (I = 0). Show that 

 

⎥⎦
⎤

⎢⎣
⎡ −++=⎟

⎠
⎞

⎜
⎝
⎛

Ω
σ

−+−+
22

ortho
)bb(

2
1)bb3(

4
1

k
'k

d
d

    (17) 

 

⎥⎦
⎤

⎢⎣
⎡ +=⎟

⎠
⎞

⎜
⎝
⎛

Ω
σ

−+
2

para
)bb3(

4
1

k
'k

d
d

       (18) 

 
(g) Integrating the above expressions over the solid angle to get the free molecular cross sections, 

like that is done in the lecture notes, show that 
 

 4



 5

⎥⎦
⎤

⎢⎣
⎡ −++π=σ −+−+

22
ortho )bb(

2
1)bb3(

4
14

9
4

    (19) 

 
 

σpara =
4
9

4π
1
4

(3b+ + b− )2⎡ 
⎣ ⎢ 

⎤
⎦⎥
       (20) 

 
Explain how does the factor 4/9 in the above expressions arise. 
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