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Stochastic processes

Stochastic processes

• t is time.

• X () is a stochastic process if X (t) is a random
variable for every t.

• t is a scalar — it can be discrete or continuous.

• X (t) can be discrete or continuous, scalar or
vector.
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Stochastic processes Markov processes

Stochastic processes
Markov processes

• A Markov process is a stochastic process in which
the probability of finding X at some value at time
t + δt depends only on the value of X at time t.

• Or, let x(s), s ≤ t, be the history of the values of
X before time t and let A be a possible value of X .
Then

P{X (t + δt) = A|X (s) =x(s), s ≤ t} =
P{X (t + δt) = A|X (t) =x(t)}
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Stochastic processes Markov processes

Stochastic processes
Markov processes

• In words: if we know what X was at time t, we
don’t gain any more useful information about
X (t + δt) by also knowing what X was at any
time earlier than t.

• This is the definition of a class of mathematical
models. It is NOT a statement about reality!!
That is, not everything is a Markov process.
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Markov processes Example

Markov processes
Example

Transition graph *
• I have $100 at time t=0.

• At every time t ≥ 1, I have $N(t).

? A (possibly biased) coin is flipped.

? If it lands with H showing, N(t + 1) = N(t) + 1.

? If it lands with T showing, N(t + 1) = N(t)− 1.

N(t) is a Markov process. Why?
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Markov processes Discrete state, discrete time

Discrete state, discrete time
States and transitions

• States can be numbered 0, 1, 2, 3, ... (or with
multiple indices if that is more convenient).

• Time can be numbered 0, 1, 2, 3, ... (or 0, ∆, 2∆,
3∆, ... if more convenient).

• The probability of a transition from j to i in one
time unit is often written Pij , where
Pij = P{X (t + 1) = i |X (t) = j}
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Markov processes Discrete state, discrete time

States and transitions
Transition graph

Transition graph P
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Pij is a probability. Note that Pii = 1−∑m,m=i Pmi . *6
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Markov processes Discrete state, discrete time

States and transitions
Transition graph

Example : H(t) is the number of Hs after t coin flips.

Assume probability of H is p.

p p p p p

1−p 1−p 1−p 1−p 1−p

0 1 2 3 4
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Markov processes Discrete state, discrete time

States and transitions
Transition graph

Example : Coin flip bets on Slide 5.

Assume probability of H is p.
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Markov processes Discrete state, discrete time

Markov processes
Notation

• {X (t) = i} is the event that random quantity X (t)
has value i .

? Example: X (t) is any state in the graph on slide 7. i
is a particular state.

• Define πi(t) = P{X (t) = i}.

• Normalization equation: ∑i πi(t) = 1.
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Markov processes Discrete state, discrete time

Markov processes
Transition equations

Transition equations: application of the law of total probability.
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π4(t + 1) = π5(t)P45

+ π4(t)(1− P14 − P24 − P64)

(Remember that
P45 = P{X (t + 1) = 4|X (t) = 5},
P44 = P{X (t + 1) = 4|X (t) = 4}

(Detail of graph = 1− P14 − P24 − P64)
on slide 7.)
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Markov processes Discrete state, discrete time

Markov processes
Transition equations
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P{X (t + 1) = 2}

= P{X (t + 1) = 2|X (t) = 1}P{X (t) = 1}

+P{X (t + 1) = 2|X (t) = 2}P{X (t) = 2}
+P{X (t + 1) = 2|X (t) = 4}P{X (t) = 4}
+P{X (t + 1) = 2|X (t) = 5}P{X (t) = 5}
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Markov processes Discrete state, discrete time

Markov processes
Transition equations

• Define Pij = P{X (t + 1) = i |X (t) = j}

• Transition equations: πi(t + 1) = ∑
j Pijπj(t).

(Law of Total Probability)

• Normalization equation: ∑i πi(t) = 1.
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Markov processes Discrete state, discrete time

Markov processes
Transition equations
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Therefore, since

Pij = P{X (t + 1) = i |X (t) = j}

πi(t) = P{X (t) = i},

π2(t + 1) = P21π1(t) + P22π2(t) + P24π4(t) + P25π5(t)

Note that P22 = 1− P52.
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Markov processes Discrete state, discrete time

Markov processes
Transition equations — Matrix-Vector Form

For an n-state system, *

• Define 
π


P11 P 1(t)

  12 ... P1n
2()


1

)
π(t = π t  , P =  P21 P22 ... P2n  1 , ν =

... ...

 
πn(t) Pn1 Pn2 ... Pnn



π π

 ...
1


• Transition equations: (t + 1) = P (t)

• Normalization equation: Tν π(t) = 1

• Other facts:

T? ν P = Tν (Each column of P sums to 1.)
? π(t) = P tπ(0)
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Markov processes Discrete state, discrete time

Markov processes
Steady state

• Steady state: πi = lim πi(t), if it exists.
t→∞

• Steady-state transition equations: πi = ∑
j Pijπj .

• Alternatively, steady-state balance equations:
πi
∑

m,m 6=i Pmi = ∑
j ,j 6=i Pijπj

• Normalization equation: ∑i πi = 1.
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Markov processes Discrete state, discrete time

Markov processes
Steady state — Matrix-Vector Form

• Steady state: π = lim π(t), if it exists.
t→∞

• Steady-state transition equations: π = Pπ.

• Normalization equation: Tν π = 1.

• Fact:
? π = lim = P tπ(0), if it exists.

t→∞
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Markov processes Discrete state, discrete time

Markov processes
Balance equations

P
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Balance equation:
π4(P14 + P24 + P64)

= π5P45

in steady state only .

Intuitive meaning: The average number of transitions
into the circle per unit time equals the average number
of transitions out of the circle per unit time.
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Markov processes Discrete state, discrete time

Markov processes
Geometric distribution

Consider a two-state system. The system can go from 1 to 0, but
not from 0 to 1.

1 0

p

1−p 1

Let p be the conditional probability that the system is in state 0 at
time t + 1, given that it is in state 1 at time t. Then

p = P
[
α(t + 1) = 0

∣∣∣∣∣α(t) = 1
]
.
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Markov processes Discrete state, discrete time

Markov processes
Geometric distribution — Transition equations

Let π(α, t) be the probability of being in state α at time t. Then, since

π(0, t + 1) = P
[
α(t + 1) = 0

∣∣∣∣α(t) = 1
]

P[α(t) = 1]

+P
[
α(t + 1) = 0

∣∣
α(t) = 0

]
w

∣∣ P[α(t) = 0],

e have

π(0, t + 1) = pπ(1, t) + π(0, t),
π(1, t + 1) = (1− p)π(1, t),

and the normalization equation

π(1, t) + π(0, t) = 1.
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Markov processes Discrete state, discrete time

Markov processes
Geometric distribution — transient probability
distribution

Assume that π(1, 0) = 1. Then the solution is

π(0, t) = 1− (1 t− p) ,
π(1, t) = (1− p)t .
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Markov processes Discrete state, discrete time

Markov processes
Geometric distribution — transient probability
distribution

Geometric Distribution
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Markov processes Discrete state, discrete time

Markov processes
Unreliable machine

1=up; 0=down.

p

1 0

1−p 1−rr
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Markov processes Discrete state, discrete time

Markov processes
Unreliable machine — transient probability
distribution

The probability distribution satisfies

π(0, t + 1) = π(0, t)(1− r) + π(1, t)p,

π(1, t + 1) = π(0, t)r + π(1, t)(1− p).
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Markov processes Discrete state, discrete time

Markov processes
Unreliable machine — transient probability
distribution

It is not hard to show that

tπ(0, t) = π(0, 0)(1− p − r)
p+ [1r + p − (1− p − r)t ] ,

π(1 t, t) = π(1, 0)(1− p − r)
r+ [1r + p − (1− p − r)t ] .

Markov Processes 25 Copyright ©c 2016 Stanley B. Gershwin.



Markov processes Discrete state, discrete time

Markov processes
Unreliable machine — transient probability
distribution

Discrete Time Unreliable Machine
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Markov processes Discrete state, discrete time

Markov processes
Unreliable machine — steady-state probability
distribution

As t →∞,
p

π(0, t) → r + p ,
r

π(1, t) → r + p

which is the solution of

π(0) = π(0)(1− r) + π(1)p,
π(1) = π(0)r + π(1)(1− p).
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Markov processes Discrete state, discrete time

Markov processes
Unreliable machine — efficiency

If a machine makes one part per time unit when it is operational,
its average production rate is

r
π(1) = r + p

This quantity is the efficiency of the machine.

If the machine makes one part per τ time units when it is
operational, its average production rate is

1P = r
τ

(
r + p

)
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Markov processes Discrete state, continuous time

Discrete state, continuous time
States and transitions

• States can be numbered 0, 1, 2, 3, ... (or with
multiple indices if that is more convenient).

• Time is a real number, defined on (−∞,∞) or a
smaller interval.

• The probability of a transition from j to i during
[t, t + δt] is approximately λijδt, where δt is small,
and
λijδt ≈ P{X (t + δt) = i |X (t) = j} for i 6= j
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Markov processes Discrete state, continuous time

Discrete state, continuous time
States and transitions

More precisely,

λijδt = P{X (t + δt) = i |X (t) = j}+ o(δt)
for i 6= j

o(δt)where o(δt) is a function that satisfies lim
δt→0

= 0
δt

This implies that for small δt, o(δt)� δt.
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Markov processes Discrete state, continuous time

Discrete state, continuous time
States and transitions

Transition graph
1

2

3

4

5

6

7
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λij is a probability rate. λijδt is a probability.

Compare with the discrete-time graph.
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Markov processes Discrete state, continuous time

Discrete state, continuous time
States and transitions

One of the transition equations:

Define πi(t) = P{X (t) = i}. Then for δt small,

π5(t + δt) ≈

(1− λ25δt − λ45δt − λ65δt)π5(t)+

λ52δtπ2(t) + λ53δtπ3(t) + λ56δtπ6(t) + λ57δtπ7(t)
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Markov processes Discrete state, continuous time

Discrete state, continuous time
States and transitions

Or,

π5(t + δt) ≈

π5(t)− (λ25 + λ45 + λ65)π5(t)δt

+(λ52π2(t) + λ53π3(t) + λ56π6(t) + λ57π7(t))δt
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Markov processes Discrete state, continuous time

Discrete state, continuous time
States and transitions

Or,

lim π5(t + δt)− π5(t)
δt→0

=
δt

dπ5 (t) =dt −(λ25 + λ45 + λ65)π5(t)

+λ52π2(t) + λ53π3(t) + λ56π6(t) + λ57π7(t)
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Markov processes Discrete state, continuous time

Discrete state, continuous time
States and transitions

Define for convenience

λ55 = −(λ25 + λ45 + λ65)

Then

dπ5 (t) =dt λ55π5(t)+

λ52π2(t) + λ53π3(t) + λ56π6(t) + λ57π7(t)
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Markov processes Discrete state, continuous time

Discrete state, continuous time
States and transitions

• Define πi(t) = P{X (t) = i}

• It is convenient to define λii = −∑
j 6=i λji ∗ ∗ ∗

d• Transition equations: πi(t) =dt
∑
λijπj(t).

j

• Normalization equation: ∑i πi(t) = 1.

∗ ∗ ∗ Often confusing!!!
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Transition equations — Matrix-Vector Form

• Define π(t), asν before.
λ11 λ12 ... λ1n


Define Λ =

 λ21 λ22 ... λ2n ...


λn1 λn2 ... λnn


d )Transition equations: π(t• = Λdt π(t).

• Normalization equation: Tν π = 1.
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Steady State

• Steady state: πi = limt πi(t), if it exists.→∞

• Steady-state transition equations: 0 = ∑
j λijπj .

• Alternatively, steady-state balance equations:
πi
∑

m,m 6=i λmi = ∑
j ,j 6=i λijπj

• Normalization equation: ∑i πi = 1.
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Steady State — Matrix-Vector Form

• Steady state: π = lim π(t), if it exists.
t→∞

• Steady-state transition equations: 0 = Λπ.

• Normalization equation: Tν π = 1.
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Sources of confusion in continuous time models

• Never Draw self-loops in continuous time
markov process graphs.

• Never write 1− λ14 − λ24 − λ64. Write
? 1− (λ14 + λ24 + λ64)δt, or
? −(λ14 + λ24 + λ64)

• λii = −∑
j 6=i λji is NOT a rate and NOT a

probability. It is ONLY a convenient notation.
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Exponential distribution

Exponential random variable T : the time to move from
state 1 to state 0.

1 0

µ
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Exponential distribution
π(0, t + δt) =

P
[
α(t + δt) = 0

∣∣∣ ]∣∣α(t) = 1 P[α(t) = 1]+

P
[
α(t + δt) = 0

∣∣ ]∣∣∣α(t) = 0 P[α(t) = 0].

or
π(0, t + δt) = µδtπ(1, t) + π(0, t) + o(δt)

or
dπ(0, t) =dt µπ(1, t).
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Exponential distribution

Or,

dπ(1, t) = −µπ(1, t)dt .

If π(1, 0) = 1, then

π(1, t) = e−µt

and
π(0 t, t) = 1− e−µ
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Exponential distribution

The probability that the transition takes place at some T ∈ [t, t + δt] is

P [α(t + δt) = 0 and α(t) = 1]

= P[α(t + δt) = 0|α(t) = 1]P[α(t) = 1]

= (µδt)(e−µt)

The exponential density function is therefore µe−µt for t ≥ 0 and 0 for t < 0.

The time of the transition from 1 to 0 is said to be exponentially distributed
with rate µ.

The expected transition time is 1/µ. (Prove it!)
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Exponential distribution

• f (t) = µe−µt for t ≥ 0; f (t) = 0 otherwise;
F (t) = 1− e−µt for t ≥ 0; F (t) = 0 otherwise.

• ET = 1/µ,VT = 1 2/µ . Therefore, σ = ET so cv=1.

µ

µf(t)

t
1 µ

F(t)

t
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Markov processes Discrete state, continuous time

Markov processes
Exponential

Density function

Exponential density
function and a small
number of samples.
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Exponential distribution: some properties

• Memorylessness:
P(T > t + x |T > x) = P(T > t)

• P(t ≤ T ≤ t + δt|T ≥ t) ≈ µδt for small δt.
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Exponential distribution: some properties

• If T1, ...,Tn are independent exponentially
distributed random variables with parameters
µ1..., µn, and

• T = min(T1, ...,Tn), then

• T is an exponentially distributed random variable
with parameter µ = µ1 + ... + µn.
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Unreliable machine

Continuous time unreliable machine.
r

up down

p
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Unreliable machine

From the Law of Total Probability:

P({the machine is up at time t + δt})=

P({the machine is up at time t + δt | the machine was up at time t}) ×
P({the machine was up at time t}) +

P({the machine is up at time t + δt | the machine was down at time t}) ×
P({the machine was down at time t})

+o(δt)

and similarly for P({the machine is down at time t + δt}).
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Unreliable machine

Probability distribution notation and dynamics:

π(1, t) = the probability that the machine is up at time t.
π(0, t) = the probability that the machine is down at time t.

P(the machine is up at time t + δt| the machine was up at time t)
= 1− pδt

P(the machine is up at time t + δt| the machine was down at time t)
= rδt
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Unreliable machine

Therefore

π(1, t + δt) = (1− pδt)π(1, t) + rδtπ(0, t) + o(δt)

Similarly,

π(0, t + δt) = pδtπ(1, t) + (1− rδt)π(0, t) + o(δt)
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Unreliable machine

or,

π(1, t + δt)− π(1, t) = −pδtπ(1, t) + rδtπ(0, t) + o(δt)

or,

π(1, t + δt)− π(1, t) o(=
δt −pπ(1, t) + rπ(0, t) + δt)

δt
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Markov processes Discrete state, continuous time

Discrete state, continuous time

or,

dπ(0, t) =dt −π(0, t)r + π(1, t)p

dπ(1, t) =dt π(0, t)r − π(1, t)p
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Markov processes Discrete state, continuous time

Markov processes
Unreliable machine

Solution

p
π(0, t) = p+r + p

[
π(0, 0)− er + p

]
−(r+p)t

π(1, t) = 1− π(0, t).

As t →∞,
p

π(0) → r + p ,
r

π(1) → r + p
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Markov processes Discrete state, continuous time

Markov processes
Unreliable machine

Steady-state solution

If the machine makes µ parts per time unit on the
average when it is operational, the overall average
production rate is

r
µπ(1) = µr + p
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Poisson Process

T1

T1 T2 T3 T4

T  + T T  + T  + T T  + T  + T  +T1 2 1 2 3 1 2 3 4

t

0

• Let Ti , i = 1, ... be a set of independent exponentially
distributed random variables with parameter λ. Each random
variable may represent the time between occurrences of a
repeating event.

? Examples: customer arrivals, clicks of a Geiger counter

• Then ∑n
i=1 Ti is the time required for n such events.
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Poisson Process

T1

T1 T2 T3 T4

T  + T T  + T  + T T  + T  + T  +T1 2 1 2 3 1 2 3 4

t

0

• Informally: N(t) is the number of events that occur between
0 and t.

• Formally: Define

N(t) =

 0 if T1 > t n such that ∑n n+1
i=1 Ti ≤ t, i=1 Ti > t

• Then N(t) is a Poisson process with pa

∑
rameter λ.
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Poisson Process

P(N(t) = n) = e−λt (λt)n

n!

0.00

0.02

0.04

0.06

0.08

0.10
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Poisson Distribution

λt = 6
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Poisson Process

P(N(t) = n) = e−λt (λt)n

n! , λ = 2

n=1
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Queueing theory
M/M/1 Queue

λ

µ

• Simplest model is the M/M/1 queue:

? Exponentially distributed inter-arrival times — mean is
1/λ; λ is arrival rate (customers/time). (Poisson
arrival process.)

? Exponentially distributed service times — mean is 1/µ;
µ is service rate (customers/time).

? 1 server.
? Infinite waiting area.

• Define the utilization ρ = λ/µ.
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Queueing theory
M/M/1 Queue

Number of customers in the system as a function of time for a
M/M/1 queue.
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Queueing theory
D/D/1 Queue

Number of customers in the system as a function of time for a
D/D/1 queue.
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Queueing theory
M/M/1 Queue

State space

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

0 1 2

µ

λ

n−1 n n+1
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Queueing theory
M/M/1 Queue

Let π(n, t) be the probability that there are n parts in
the system at time t. Then,

π(n, t + δt) = π(n − 1, t)λδt + π(n + 1, t)µδt +
π(n, t)(1− (λδt + µδt)) + o(δt)
for n > 0

and

π(0, t + δt) = π(1, t)µδt + π(0, t)(1− λδt) + o(δt).
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Queueing theory
M/M/1 Queue

Or,

dπ(n, t) =dt π(n − 1, t)λ + π(n + 1, t)µ− π(n, t)(λ + µ),
n > 0

dπ(0, t) = π(1, t)µ− π(0dt , t)λ.

If a steady state distribution exists, it satisfies

0 = π(n − 1)λ + π(n + 1)µ− π(n)(λ + µ), n > 0
0 = π(1)µ− π(0)λ.

Why “if”?
Markov Processes 66 Copyright ©c 2016 Stanley B. Gershwin.



Queueing theory M/M/1 Queue

Queueing theory
M/M/1 Queue – Steady State

Let ρ = λ/µ. These equations are satisfied by

(n) = (1 ) nπ − ρ ρ , n ≥ 0
if ρ < 1.

The average number of parts in the system is

n̄ =
∑

nπ(n) = ρ

n 1− ρ = λ
.

µ− λ

*
Markov Processes 67 Copyright ©c 2016 Stanley B. Gershwin.



Queueing theory Little’s Law

Queueing theory
Little’s Law

• True for most systems of practical interest (not just M/M/1)
.

• Steady state only.

• L = the average number of customers in a system.

• W = the average delay experienced by a customer in the
system.

L = λW
In the M/M/1 queue, L = n̄ and

1W = .
µ− λ
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Queueing theory
Sample path

• Suppose customers arrive in a Poisson process with average inter-arrival
time 1/λ = 1 minute; and that service time is exponentially distributed
with average service time 1/µ = 54 seconds.

? The average number of customers in the system is 9.
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Queue behavior over a short time interval — initial transient
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Queueing theory
Sample path
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Queue behavior over a long time interval
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Queueing theory
M/M/1 Queue capacity

W

µ=1

λ
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• µ is the capacity of
the system.

• If λ < µ, system is
stable and waiting
time remains bounded.

• If λ > µ, waiting time
grows over time.
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Queueing theory
M/M/1 Queue capacity

W

λ

µ=1

µ=2
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• To increase capacity,
increase µ.

• To decrease delay for a
given λ, increase µ.
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Queueing theory
Other Single-Stage Models

Things get more complicated when:

• There are multiple servers.

• There is finite space for queueing.

• The arrival process is not Poisson.

• The service process is not exponential.

Closed formulas and approximations exist for some, but not all,
cases.
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Queueing theory
M/M/s Queue

µ

µ

µ

λ

s-Server Queue, s = 3
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Queueing theory
M/M/s Queue

µ

λ

µ

λ

0 1 2

µ

λ

µ

λ

µ

λ

µ

λ

µ

λ

2 3

s−1 s

µ

λ

s(s−1) s s(s−2)

s−2 s+1

• The service rate when there are k > s customers in the
system is sµ since all s servers are always busy.

• The service rate when there are k ≤ s customers in the
system is kµ since only k of the servers are busy.
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Queueing theory
M/M/s Queue

 sk kρ π

P(k) =

 (0)
k! , k ≤ s

π(0)ssρk

s! , k > s

where

ρ = λ 1;s < π(0) chosen so that
µ

∑
P(k) = 1

k
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Queueing theory
M/M/s Queue

W vs. λ; sµ = constant
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Queueing theory
M/M/s Queue

L vs. λ; sµ = constant
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Queueing theory
M/M/s Queue
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• Why do all the curves go to infinity at the same value of λ?

• Why does L→ 0 when λ→ 0?

• Why is the (µ, s) = (.5, 8) curve the highest, followed by
(µ, s) = (1, 4), etc.?
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Queueing theory
Networks of Queues

• Set of queues where customers can go to another
queue after completing service at a queue.

• Open network: where customers enter and leave
the system. λ is known and we must find L and W .

• Closed network: where the population of the
system is constant. L is known and we must find λ
and W .
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Queueing theory
Networks of Queues

Examples of Open networks

• internet traffic
• emergency room
• food court
• airport (arrive, ticket counter, security, passport

control, gate, board plane)
• factory with no centralized material flow control

after material enters
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Networks of Queues Examples

Person
Sbarro’s TCBY

PIZZA McDonald’s Frozen Yogurt
Person with Tray

E
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C
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E
X

IT
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Queueing theory
Networks of Queues

Examples of Closed networks

• factory with material controlled by keeping the
number of items constant (CONWIP)

• factory with limited fixtures or pallets

Empty Pallet Buffer

Raw Part Input

Finished Part Output
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Queueing theory
Jackson Networks

Queueing networks are often modeled as Jackson networks.

• Relatively easy to compute performance measures (capacity,
average time in system, average queue lengths).

• Easily provides intuition.

• Easy to optimize and to use for design.

• Valid (or good approximation) for a large class of systems ...
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Queueing theory
Jackson Networks

• ... but not all. Storage areas must be infinite (i.e., blocking
never occurs).

? This assumption leads to bad results for systems with
bottlenecks at locations other than the first station.
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Queueing theory
Open Jackson Networks

=                          B                        M

A

A

A

D

D

Goal of analysis: to say something about how much inventory
there is in this system and how it is distributed.
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Queueing theory
Open Jackson Networks

• Items arrive from outside the system to node i according to a Poisson
process with rate αi .

• αi > 0 for at least one i .

• When an item’s service at node i is finished, it goes to node j next with
probability pij .

• If pi0 = 1−
∑

pij > 0, then items depart from the network from node
j

i .

• pi0 > 0 for at least one i .

• We will focus on the special case in which each node has a single server
with exponential processing time. The service rate of node i is µi .
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Queueing theory
Open Jackson Networks
• Define λi as the total arrival rate of items to node i . This

includes items entering the network at i and items coming
from all other nodes.

• Then λi = αi +
∑

pjiλj
j

• In matrix form, let λ be the vector of λi , α be the vector of
αi , and P be the matrix of pij . Then

= + PTλ α λ

or
λ = (I − PT )−1α
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Queueing theory
Open Jackson Networks

• Define π(n1, n2, ..., nk) to be the steady-state probability that
there are ni items at node i , i = 1, ..., k .

• Define ρi = nλi/µ i
i ; πi(ni) = (1− ρi)ρi .

• Then
π(n1, n2, ..., nk) =

∏
πi(ni)

i

n̄ = En i
i = ρ

i 1− ρi

Does this look familiar?
* *
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Queueing theory
Open Jackson Networks

• This looks as though each station is an M/M/1
queue. But even though this is NOT in general
true, the formula holds.

• The product form solution holds for some more
general cases.

• This exact analytic formula is the reason that the
Jackson network model is very widely used —
sometimes where it does not belong!
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Queueing theory
Closed Jackson Networks

• Consider an extension in which

? αi = 0 for∑all nodes i .
? pi0 = 1− pij = 0 for all nodes i .

j

• Then

? Since nothing is entering and nothing is departing from the
network,∑the number of items in the network is constant .
That is, ni (t) = N for all t.

? λi =
∑ i

pjiλj does not have a unique solution:
j

If {λ∗
1 , λ

∗
2 , ..., λ

∗
k} is a solution, then {sλ∗

1 , sλ∗
2 , ..., sλ∗

k} is also a
solution for any s ≥ 0.
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Queueing theory
Closed Jackson Networks

For some s, define

oπ (n1, n2, ..., n ni
k) =

∏
[(1

i
− ρi)ρi ]

where

s iρ = λ∗
i

µi

This looks like the open network probability distribution (Slide 89),
but it is a function of s.
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Queueing theory
Closed Jackson Networks

Consider a closed network with a population of N . Then if∑
ni = N ,

i
o

π(n1, n2, ..., nk) = π (n1, n2, ..., nk)
o

m1+m2+

∑
π (m1,m2, ...,mk)

...+mk=N

Since oπ is a function of s, it looks like π is a function of s. But it
is not, because all the s’s cancel! There are nice ways of
calculating

C(k ,N) =
∑ oπ (m1,m2, ...,mk)

m1+m2+...+mk=N
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Queueing theory
Closed Jackson Network model of an FMS

Solberg’s “CANQ” model.

M

(Transport

Station)

Load/Unload

M − 1

3

2

1

q
1

2

3

M−1
q

q

q

qM

Let {pij} be the set of
routing probabilities, as
defined on Slide 87.
piM = 1 if i 6= M
pMj = qj if j 6= M
pij = 0 otherwise
Service rate at Station
i is µi .
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Queueing theory
Closed Jackson Network model of an FMS

Let N be the number of pallets.
The production rate is

C(MP = ,N − 1)
C(M,N) µm

and C(M,N) is easy to calculate in this case.

• Input data: M,N , qj , µj(j = 1, ...,M)

• Output data: P,W , ρj(j = 1, ...,M)
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Queueing theory
Closed Jackson Network model of an FMS
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Queueing theory
Closed Jackson Network model of an FMS

Average time in system
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Queueing theory
Closed Jackson Network model of an FMS

Utilization
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Queueing theory
Closed Jackson Network model of an FMS

P
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Queueing theory
Closed Jackson Network model of an FMS

Average time in system

Station 2 operation time
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Queueing theory
Closed Jackson Network model of an FMS

Utilization

Station 2

Station 2 operation time
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