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Stochastic processes

t is time.

X() is a stochastic process if X(t) is a random
variable for every t.

t is a scalar — it can be discrete or continuous.

X(t) can be discrete or continuous, scalar or
vector.
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Stochastic processes
Markov processes

e A Markov process is a stochastic process in which
the probability of finding X at some value at time
t + ot depends only on the value of X at time t.

e Or, let x(s),s < t, be the history of the values of
X before time t and let A be a possible value of X.
Then

P{X(t + dt) = AlX(s) =x(s),
P{X(t+ ot) = AlX(t) =x(t)}
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Stochastic processes Markov processes

Stochastic processes
Markov processes

e |n words: if we know what X was at time t, we
don't gain any more useful information about
X(t + dt) by also knowing what X was at any
time earlier than t.

e This is the definition of a class of mathematical

models. It is NOT a statement about reality!!
That is, not everything is a Markov process.
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Markov processes Example

Markov processes
Example

Transition graph *
e | have $100 at time t=0.

e At every time t > 1, | have $N(t).

* A (possibly biased) coin is flipped.

* If it lands with H showing, N(t+ 1) = N(t) + 1.

* If it lands with T showing, N(t + 1) = N(t) — 1.
N(t) is a Markov process. Why?
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S Discrete state, discrete time

Discrete state, discrete time
States and transitions

e States can be numbered 0, 1, 2, 3, ... (or with
multiple indices if that is more convenient).

e Time can be numbered 0, 1, 2, 3, ... (or 0, A, 2A,
3A, ... if more convenient).

e The probability of a transition from j to i in one
time unit is often written Pj;, where

Py = P{X(t+1) = i[X(t) =}
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Markov processes Discrete state, discrete time

States and transitions
Transition graph

Transition graph

R 1-P-P P
14~ 24 64
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24 64
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(@&\ @ )
Pjj is a probability. Note that P =1 — 3, i Pmi. *
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States and transitions
Transition graph

Example : H(t) is the number of Hs after t coin flips.

Assume probability of H is p.
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States and transitions
Transition graph

Example : Coin flip bets on Slide 5.

Assume probability of H is p.

1-p 1-p 1-p 1-p 1-p 1-p 1-p 1-p 1-p
o o o o o o o o o
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Markov processes
Notation

e {X(t) =i} is the event that random quantity X(t)
has value ;.

* Example: X(t) is any state in the graph on slide 7. i
is a particular state.

e Define m;(t) = P{X(t) = i}.
e Normalization equation: 3; m;(t) = 1.
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Markov processes Discrete state, discrete time

Markov processes
Transition equations

Transition equations: application of the law of total probability.

;1—'7.,—';4—'24
7T4(t + 1) = 7T5(t)P45
+ ma(t)(1 — Pra — Pas — Pea)
P
45
(Remember that
Pis = P{X(t + 1) = 4| X(t) =5},
P = P{X(t +1) = 4| X(t) = 4}
(Detail of graph =1— Piyg— Pay — Pes)
on slide 7.)
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esses Discrete state, discrete time

Markov processes
Transition equations

P{X(t +1) =2}

=P{X(t+1) =

+P{X(t+1)=

+P{X(t+1)=

FP{X(t+1) =2|X(t
Markov Processes 12
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S Discrete state, discrete time

Markov processes
Transition equations

e Define P; = P{X(t 4+ 1) = i|X(t) = j}

e Transition equations: m;(t + 1) = ¥; P;m;(t).
(Law of Total Probability)

e Normalization equation: ¥, m;(t) = 1.
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Markov processes
Transition equations

14

1-B-Bih .
f) . Therefore, since
64

= %3 Py = PAX(t+1) = i1X(£) = J}
¢ %@ mi(t) = P{X(t) = i},
7T2(t + 1) = P217T1(t) -+ P227T2(t) + P247T4(t) -+ P257T5(t)

Note that P22 =1- P52.
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Markov processes
Transition equations — Matrix-Vector Form

For an n-state system, *
e Define
7T1(t) P11 P12 Pl,-, 1
7T(t) _ 7T2(i') , p— Py Py ... P, ’ L= 1
7T,7(t) Pnl Pnz P,m 1

e Transition equations: m(t + 1) = Pr(t)
e Normalization equation: v 7(t) =1
o Other facts:

x vTP=uvT (Each column of P sums to 1.)
* 7(t) = P'n(0)
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Markov processes
Steady state

Steady state: m; = lim ;(t), if it exists.
t—00

Steady-state transition equations: m; = 3 ; Pjm;.

Alternatively, steady-state balance equations:
Ti Yom,mi Pmi = 2j jzi Py

Normalization equation: >; 7 = 1.
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Markov processes
Steady state — Matrix-Vector Form

Steady state: m = lim 7(t), if it exists.
t—00

Steady-state transition equations: m = P,

Tr=1.

Normalization equation: v

e Fact:

*x 7= lim = P'xr(0), if it exists.
t—o00
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Markov processes
Balance equations

Balance equation:
74(P1a + Pas + Pea)

= 75 Py

. 1-P-P -P
‘\\ 14 24 64

in steady state only .

Intuitive meaning: The average number of transitions
into the circle per unit time equals the average number
of transitions out of the circle per unit time.

Markov Processes 18 Copyright (©2016 Stanley B. Gershwin.



Markov processes Discrete state, discrete time

Markov processes
Geometric distribution

Consider a two-state system. The system can go from 1 to 0, but

not from 0 to 1.
1-p 1

()

Let p be the conditional probability that the system is in state 0 at
time t + 1, given that it is in state 1 at time t. Then

p:P[a(t—l—l):O

at) = 1] :
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Markov processes
Geometric distribution — Transition equations

Let m(a, t) be the probability of being in state « at time t. Then, since

(0, t +1) —P[a(t+1)—0

a(t) = 1} Pla(t) = 1]

+P [a(t+1):0

at) = O} Pla(t) = 0],
we have

7(0,t+1) = pn(1,t)+ 7(0,1t),
m(l,t+1) =(1-p)n(1,t),

and the normalization equation

m(1,t)+m(0,t) = 1.
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S Discrete state, discrete time

Markov processes

Geometric distribution — transient probability
distribution

Assume that 7(1,0) = 1. Then the solution is

m(0,t) = 1—(1- p)t’
(1, t) = (1-p)-.
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Discrete state, discrete time
Markov processes

Geometric distribution — transient probability

distribution

probability

Markov Processes

]

Geometric Distribution

(=)
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Markov processes
Unreliable machine

1=up; O=down.
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S Discrete state, discrete time

Markov processes

Unreliable machine — transient probability
distribution

The probability distribution satisfies

7(0,t+1) = w(0,t)(1 —r)+n(1,t)p,

a1, t+1) = w(0,8)r + (1, £)(1 — p).
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Markov processes

Unreliable machine — transient probability
distribution

It is not hard to show that

7(0,t) = (o 0)(1_ )t
[1-(1-p-1)T,

r—|—p

7(1,t) = (1 O)(l—p—r)t
1-(1-p-n)].

r+p
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Markov processes
Unreliable machine — transient probability

distribution

probability

Markov Processes

0.8
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S Discrete state, discrete time

Markov processes
Unreliable machine — steady-state probability
distribution

As t — oo,

p

r+p’
r

r+p

w(0,t) —

w(l,t) —

which is the solution of

m(0) = 7(0)(1 = r)+=(1)p,
(1) = w(0)r+7(1)(1 — p).
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Markov processes
Unreliable machine — efficiency

If a machine makes one part per time unit when it is operational,
its average production rate is

r
r+p
This quantity is the efficiency of the machine.

(1) =

If the machine makes one part per 7 time units when it is
operational, its average production rate is

=35
T\r+p
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Markov processes Discrete state, continuous time

Discrete state, continuous time
States and transitions

e States can be numbered 0, 1, 2, 3, ... (or with
multiple indices if that is more convenient).

e Time is a real number, defined on (—o0,0) or a
smaller interval.

e The probability of a transition from j to i during
[t,t + dt] is approximately \;dt, where 0t is small,
and

Njot = P{X(t+dt) = i|X(t) =j} for i #j
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Discrete state, continuous time
States and transitions

More precisely,

N0t = P{X(t + dt) = i|X(t) = j} + o(dt)
for i #j

ot
where o(dt) is a function that satisfies |im olot) =0
5t—0 Ot

This implies that for small §t, o(dt) < ot.
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Markov processes Discrete state, continuous time

Discrete state, continuous time
States and transitions

Transition graph 5

DN
o5
OEE =0

Ajj is a probability rate. \;0t is a probability.
Compare with the discrete-time graph.
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Markov processes Discrete state, continuous time

Discrete state, continuous time
States and transitions

One of the transition equations:
Define m;(t) = P{X(t) = i}. Then for jt small,

ms(t + 0t) ~
(1 — )\2551_' - /\45(51’ — )\655t)7T5(t)+

)\5251.'7?2(1') + )\5351’7’(’3(1’) + )\565t7T6(t) + )\5751’7’(‘7(1’)
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Discrete state, continuous time
States and transitions

Or,

ms(t + 0t) =

7T5(t) — ()\25 + Mg + /\65)7T5(t)(5t

+(>\527T2(t) + )\537’(3(1’) + )\567'(6(1') + )\577T7(t))5t
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Discrete state, continuous time
States and transitions

Or,

im ms(t + 0t) — ms(t) _
ot—0 ot

d7T5

W(t-) = —()\25 + A\g5 + /\65)7T5(t)

—|‘/\527T2(t) + )\537T3(t) + )\567T6(t) + )\577T7(t)
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Discrete state, continuous time
States and transitions

Define | for convenience

M55 = —(Aos + Aas + Aes)

Then

d7T5

W(t) = Ass7s(t)+

)\5271'2(1') + )\537'('3(1') + )\567'('6(1') + )\5771’7(1')

Markov Processes 35 Copyright (©2016 Stanley B. Gershwin.



Discrete state, continuous time
States and transitions

e Define m;(t) = P{X(t) = i}

o It is| convenient |to define \j = — ;i \ji * * %

dﬂ',’(t)

e Transition equations: e >oAmi(t).
J

e Normalization equation: >; m;(t) = 1.

x x x Often confusing!!!
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Discrete state, continuous time
Transition equations — Matrix-Vector Form

e Define 7(t), v as before.

)\11 >\12 )\1,7
Define A = Ar Az Aan
)\nl )\n2 )\nn

t
e Transition equations: 7;(1‘ ) = An(t).

T

e Normalization equation: v' 7w = 1.
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Steady State

Steady state: m; = lim;_,o, m;(t), if it exists.

Steady-state transition equations: 0 = >; A\j;.

Alternatively, steady-state balance equations:
i Xm,m#i Ami = ) j4i AjTj

Normalization equation: >; 7 = 1.
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Steady State — Matrix-Vector Form

e Steady state: mw = lim m(t), if it exists.

t—00
e Steady-state transition equations: 0 = Ar.

T

e Normalization equation: v' 7 = 1.
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Sources of confusion in continuous time models

e | Never | Draw self-loops in continuous time

markov process graphs.

o | Never |write 1 — A\js — Aosa — Aga. Write

* 1— ()\14 4+ Aog + )\64)51', or
* — (M2 + Aoa + ea)
o \i=—>4Niis| NOT |arateand| NOT |a

probability. It is| ONLY | a convenient notation.
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Exponential distribution

Exponential random variable T: the time to move from
state 1 to state O.
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Discrete state, continuous time
Exponential distribution
m(0,t + dt) =

P -oz(t +0t) = 0la(t) = 1- Pla(t) = 1]+

P -oz(t +dt) = 0|a(t) = 0- Pla(t) = 0].

or
(0, t + dt) = potm(1, t) + 7(0, t) + o(0t)

or
dn(0,t)

dt

= pm(1,t).
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Discrete state, continuous time
Exponential distribution

Or,

dr(l,t)
dt

—um(1,t).

If 7(1,0) =1, then

w(l,t) =e
and
m(0,t) =1—e#t
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Exponential distribution

The probability that the transition takes place at some T € [t, t + dt] is
P [a(t+dt) =0 and ot) = 1]
= Pla(t + 0t) = 0]a(t) = 1]P[a(t) = 1]

= (udt)(e™"")

The exponential density function is therefore e #f for t > 0 and 0 for t < 0.

The time of the transition from 1 to 0 is said to be exponentially distributed
with rate pu.

The expected transition time is 1/p. (Prove it!)
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Exponential distribution

o f(t)=pe " for t >0; f(t) = 0 otherwise;
F(t)=1—e#t for t > 0; F(t) = 0 otherwise.

o ET =1/u, V7 =1/pu2. Therefore, o = ET so cv=L.

fom F),

1 C ' P ) ‘
T 1
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Markov processes Discrete state, continuous time

Markov processes
Exponential

Density function

Exponential density
function and a small
number of samples.
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Discrete state, continuous time
Exponential distribution: some properties

e Memorylessness:
P(T >t+x|T >x)=P(T >t)

o P(t< T <t+0t|T >t)= pdt for small ot.
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Discrete state, continuous time
Discrete state, continuous time
Exponential distribution: some properties

e If T1,..., T, are independent exponentially
distributed random variables with parameters

[41..., fbp, and
e T =min(Ty,..., T,), then

e [ is an exponentially distributed random variable
with parameter = g + ... + fn.
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Unreliable machine

Continuous time unreliable machine.

r
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Markov processes Discrete state, continuous time

Discrete state, continuous time

Unreliable machine
From the Law of Total Probability:

P({the machine is up at time t + dt})=

P({the machine is up at time t 4 ¢t | the machine was up at time t}) x
P({the machine was up at time t}) +

P({the machine is up at time t 4 d¢ | the machine was down at time t}) x
P({the machine was down at time t})

+o(dt)

and similarly for P({the machine is down at time t 4 t}).
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Unreliable machine

Probability distribution notation and dynamics:

7(1, t) = the probability that the machine is up at time t.
7(0, t) = the probability that the machine is down at time t.

P(the machine is up at time t + 0t| the machine was up at time t)
=1— pdit

P(the machine is up at time t + 0t| the machine was down at time t)
= rit
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Unreliable machine

Therefore

(1, t +dt) = (1 — pdt)n(1,t) + rotw(0, t) + o(0t)

Similarly,

7(0,t 4 0t) = pdtm(1,t) + (1 — rot)m(0, t) + o(dt)
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Discrete state, continuous time
Discrete state, continuous time

Unreliable machine

or,
(1, t+dt) — w(1,t) = —pdtm(1,t) + rotm(0, t) + o(0t)
or,
(1, t+ 5(2 —n(1l,t) pr(L) + rr(0.1) + o(6<$tt)
53 Copyright ©2016 Stanley B. Gershwin.
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Discrete state, continuous time

or,
IO _ 0.ty +w(1, 1)
dt
dr(l,t)
” = w0, t)r — (1, t)p
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Markov processes Discrete state, continuous time

Markov processes
Unreliable machine

Solution
7(0,t) = P4 [7‘(’(0,0) — p] e~ (rtp)t
r+p r+p
m(l,t) = 1—m(0,t).
As t — oo,
p
0) — ,
"0 -
r
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Markov processes Discrete state, continuous time

Markov processes
Unreliable machine

Steady-state solution

If the machine makes y parts per time unit on the
average when it is operational, the overall average
production rate is

(1) =
p(1) L
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Markov processes Discrete state, continuous time

Discrete state, continuous time

Poisson Process
T + T2 Tz + T3 1+ T+ B +14

0 T +

e Let 7;,i=1,... be a set of independent exponentially
distributed random variables with parameter X\. Each random
variable may represent the time between occurrences of a

repeating event.

* Examples: customer arrivals, clicks of a Geiger counter
e Then > 7, T; is the time required for n such events.
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Poisson Process

0 7?+T2 Tz+T3 h+T+ % +74

+

e Informally: N(t) is the number of events that occur between
0 and t.

e Formally: Define
{ 0if Tl >t

(CR ;
nsuchthat 7, T, <¢t, Y7 T, >t

e Then N(t) is a Poisson process with parameter \.
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Poisson Process

P(N(t) = n) = e_”():!)n

Poisson Distribution

0.18 T T T T

016 o me e B o R LR .
[ R ) e I 8
012 oo B R e I .
010 [+ -omemme e B R e I e B B .
0.08 [~ e B R e R e 8
006 [ --remeee s B R P e O e R .
004 f---meeee R I Y St I B R v R
0.02 -~ HH B P EEE O R B H—

0.00
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Markov processes Discrete state, continuous time

Discrete state, continuous time
Poisson Process

At)"
P(N(t) = n) = e_’\t(nl), A=2
P(N(l‘):n)&4

0.35

03

2 1
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M/M/1 Quee

Queueing theory
M/M/1 Queue

S T - 4433

e Simplest model is the M/M/1 queue:

* Exponentially distributed inter-arrival times — mean is
1/X; X\is arrival rate (customers/time). (Poisson
arrival process.)

* Exponentially distributed service times — mean is 1/y;
w is service rate (customers/time).

* 1 server.

* Infinite waiting area.

e Define the utilization p = \/p.
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M/M/1 Quee

Queueing theory
M/M/1 Queue

Number of customers in the system as a function of time for a
M/M/1 queue.
n

~ N WA OO
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M/M/1 Quee

Queueing theory
D/D/1 Queue

Number of customers in the system as a function of time for a
D/D/1 queue.
n

S~ N WA OO
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Queueing theory
M/M/1 Queue

State space
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Queueing theory
M/M/1 Queue

Let 7(n, t) be the probability that there are n parts in
the system at time t. Then,

w(n,t+4dt) = w(n—1, )\t +7w(n+ 1, t)udt +
7(n, t)(1 — (Aot + pdt)) + o(dt)
forn >0

and

7(0,t + dt) = w(1, t)uot + 7(0, t)(1 — Adt) + o(dt).
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M/M/1 Quee

Queueing theory
M/M/1 Queue

Or,
dwgr;, t) _ m(n—1, O\ +7(n+1,t)u—x(n, t)(\ + p),
n>0
d7‘(’(0,t) _
s = (Lo —m(0.6)\

If a steady state distribution exists, it satisfies
0 = w(n—DA+7(n+1)pu—m(n)(A+u),n>0
0 = m(1)p—m(0)A.

Why “if"?
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Queueing theory
M/M/1 Queue — Steady State

Let p = A/u. These equations are satisfied by
m(n)=(1—=p)p".n=0
if p<1.

The average number of parts in the system is

Markov Processes 67 Copyright (©2016 Stanley B. Gershwin.

*



Queueing theory Little's Law

Queueing theory
Little’s Law

e True for most systems of practical interest (not just M/M/1)

e Steady state only.
e | = the average number of customers in a system.

e W = the average delay experienced by a customer in the

system.
L=\W
In the M/M/1 queue, L = n and
Vp——
= A
Markov Processes 68
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MM/

Queueing theory
Sample path

e Suppose customers arrive in a Poisson process with average inter-arrival
time 1/X = 1 minute; and that service time is exponentially distributed
with average service time 1/u = 54 seconds.

* The average number of customers in the system is 9.

n(t)

0 20 40 60 80 100
t

Queue behavior over a short time interval — initial transient
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M/M/1

Queueing theory
Sample path

30

25 1

20 [ 1

. ‘ ‘ ‘ I
0 1000 2000 3000 4000 5000 6000
t

Queue behavior over a long time interval
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MM/

Queueing theory
M/M/1 Queue capacity

e i is the capacity of
the system.

o If A < p, system is
stable and waiting
time remains bounded.

e If A > pu, waiting time
5 5 grows over time.
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M/M/1

Queueing theory
M/M/1 Queue capacity

100

e To increase capacity,
increase L.

80

60

e To decrease delay for a
given ), increase [i.

40

20
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Queueing theory
Other Single-Stage Models

Things get more complicated when:
e There are multiple servers.
e There is finite space for queueing.
e The arrival process is not Poisson.

e The service process is not exponential.

Closed formulas and approximations exist for some, but not all,

cases.

Markov Processes 73 Copyright (©2016 Stanley B. Gershwin.



SNl /M /s Queue

Queueing theory
M/M/s Queue

s-Server Queue, s = 3



Queueing theory M/M/s Queue

Queueing theory
M/M/s Queue

(s-2)u (s-1Tu

e The service rate when there are k > s customers in the
system is su since all s servers are always busy.

e The service rate when there are k < s customers in the
system is ku since only k of the servers are busy.
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Queueing theory
M/M/s Queue

sk pk
7r(0) k' : k<s
P(k) =
sp¥
7(0)—— o k>s

p=—<1, m(0) chosen so that)_ P(k) =1
k
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M/M/> Queue
Queueing theory
M/M/s Queue

W vs. \; sy = constant
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M{84/s Quase
Queueing theory

M/M/s Queue

20

Markov Processes

L vs. \; sy = constant

lambda
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M/ M/s Queue

Queueing theory
M/M/s Queue

p—

2333

(musl-6
(mus)=(2:2) -

(mus)=(1.4

mu.5)=(.5.8)

e Why do all the curves go to infinity at the same value of A7

e Why does L — 0 when A — 07

e Why is the (p,s) = (.5,8) curve the highest, followed by
(1,5) = (1,4), etc.?
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Queueing theory

Networks of Queues

e Set of queues where customers can go to another
queue after completing service at a queue.

e Open network: where customers enter and leave
the system. X is known and we must find L and W.

e (Closed network: where the population of the
system is constant. L is known and we must find A
and W.
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Queueing theory

Networks of Queues

Examples of Open networks

internet traffic
emergency room
food court

airport (arrive, ticket counter, security, passport
control, gate, board plane)

factory with no centralized material flow control
after material enters
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Networks of Queues Examples

Markov Processes

M Person

lﬁl Person with Tray

ENTRANCE

Tables

Sbarro’s

McDonald’s

TCBY
Frozen Yogurt

82
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Queueing theory

Networks of Queues

Examples of Closed networks

e factory with material controlled by keeping the
number of items constant (CONWIP)

e factory with limited fixtures or pallets
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Queueing theory

Jackson Networks

Queueing networks are often modeled as Jackson networks.

e Relatively easy to compute performance measures (capacity,
average time in system, average queue Iengths).

e Easily provides intuition.
e Easy to optimize and to use for design.

e Valid (or good approximation) for a large class of systems ...
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Queueing theory

Jackson Networks

e ... but not all. Storage areas must be infinite (i.e., blocking
never occurs).

* This assumption leads to bad results for systems with
bottlenecks at locations other than the first station.
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Queueing theory

Open Jackson Networks

Goal of analysis: to say something about how much inventory
there is in this system and how it is distributed.
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Queueing theory

Open Jackson Networks

Items arrive from outside the system to node i according to a Poisson
process with rate «;.

a; > 0 for at least one /.

When an item'’s service at node i is finished, it goes to node j next with
probability pj;.

If pop=1-— Z pij > 0, then items depart from the network from node
J

i.
pio > 0 for at least one i.

We will focus on the special case in which each node has a single server
with exponential processing time. The service rate of node i is ;.
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Queueing theory

Open Jackson Networks

e Define )\; as the total arrival rate of items to node i. This
includes items entering the network at / and items coming
from all other nodes.

e Then )\; =+ iji)‘j

J

e In matrix form, let A be the vector of )\;, o be the vector of
«j, and P be the matrix of p;. Then

A=a+PTA

or
A=(-P")
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Queueing theory

Open Jackson Networks

e Define 7(ny, my, ..., nk) to be the steady-state probability that
there are n; items at node i, i =1, ..., k.

e Define p; = \j/pi;  mi(ni) = (1 — pi)pi".
e Then

Does this look familiar?
* *
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Queueing theory

Open Jackson Networks

e This looks as though each station is an M/M/1
queue. But even though this is NOT in general
true, the formula holds.

e The product form solution holds for some more
general cases.

e This exact analytic formula is the reason that the
Jackson network model is very widely used —
sometimes where it does not belong!
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Queueing theory

Closed Jackson Networks

e Consider an extension in which

* «a; = 0 for all nodes i.
* pio=1- Zp,-j = 0 for all nodes i.

J
e Then

* Since nothing is entering and nothing is departing from the
network, the number of items in the network is constant .

That is, Z ni(t) = N for all t.
i
* A= ij,-)\j does not have a unique solution:

j
If {2\, A3, ..., A5} is a solution, then {sA},s)3,...,sAL} is also a

solution for any s > 0.

Markov Processes 91 Copyright (©2016 Stanley B. Gershwin.



Queueing theory

Closed Jackson Networks

For some s, define

(1, mo, oy ni) = [TI(X = pi)pl]

1
where

ST

1

Hi

Pi =

This looks like the open network probability distribution (Slide 89),
but it is a function of s.
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Queueing theory

Closed Jackson Networks

Consider a closed network with a population of N. Then if

Zn,-:N,

o
7(ny, Ny, ..., ng) = 7°(ny, No, ..., Nk)

Z wo(my, my, ..., my)
my+mo+...4+m=N

Since 7° is a function of s, it looks like 7 is a function of s. But it
is not, because all the s’s cancel!l There are nice ways of
calculating

C(k, N) = Z 7r°(m1,m2,...,mk)

mi+my+..+m=N
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Networks of Queues Application — Simple Flexible Manufacturing System model

Queueing theory
Closed Jackson Network model of an FMS

Solberg’s "CANQ" model.

Let {p;} be the set of
routing probabilities, as
defined on Slide 87.

pim=1if i #M
pvj = q; if j# M

p;j = 0 otherwise

(Transport
Station)

Service rate at Station

>
IS f;.
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Networks of Queues Application — Simple Flexible Manufacturing System model

Queueing theory
Closed Jackson Network model of an FMS

Let N be the number of pallets.

The production rate is

C(M,N — 1)

P = m
cm,ny

and C(M, N) is easy to calculate in this case.
e Input data: M, N, q;, 11;(j =1, ..., M)

e Output data: P, W, p;(j =1,..., M)
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Networks of Queues Application — Simple Flexible Manufacturing System model

Queueing theory
Closed Jackson Network model of an FMS

P

035

Number of pallets
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Networks of Queues Application — Simple Flexible Manufacturing System model

Queueing theory
Closed Jackson Network model of an FMS

Average time in system

70

40

Number of Pallets

Markov Processes 97 Copyright (©2016 Stanley B. Gershwin.



Networks of Queues Application — Simple Flexible Manufacturing System model

Queueing theory

Closed Jackson Network model of an FMS

Utilization
T
s
o Station 2 |
0.6 -
04 - =
02 o o
0 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Number of Pallets
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Networks of Queues Application — Simple Flexible Manufacturing System model

Queueing theory
Closed Jackson Network model of an FMS

045

04

Station 2 operation time
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Networks of Queues Application — Simple Flexible Manufacturing System model

Queueing theory
Closed Jackson Network model of an FMS

Average time in system

45

2

0 05 1 L5 2 25 3 35 4 45 5

Station 2 operation time
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Networks of Queues Application — Simple Flexible Manufacturing System model

Queueing theory
Closed Jackson Network model of an FMS

Qstaﬁon 2

Utilization

Station 2 operation time
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