MIT 2.853/2.854 Introduction to Manufacturing Systems Quality/Quantity Interactions

Lecturer: Stanley B. Gershwin

Copyright © 2005 Stanley B. Gershwin.

Goals of Talk

- To show that there is great advantage in treating quality and quantity simultaneously in the design and operation of manufacturing systems.
- To report on MIT research.
 Collaborators: Irvin C. Schick, Jongyoon Kim.
- To enlist additional industry assistance.
 General Motors R & D has generously contributed to the support of this work.

Introduction

In manufacturing,

- Quantity is about how much is produced, when it is produced, and what resources are required to produce it.
- Quality is about how well it is made, and how much of it is made well. Production quality is about not giving customers what they do not want.

Introduction

- Quantity measures include production rate, lead time, inventory, utilization.
- Quality measures include yield and output defect rate.

Introduction

- Quantity strategies include optimizing local inventories, optimizing global inventory, other release/dispatch policies, make-to-order, etc.
- Quality strategies include inspection, statistical process control, etc.

The Problem

Introduction

The problem is that, conventionally, ...

- Quantity strategies are selected according to how they affect quantity measures, and
- Quality strategies are selected according to how they quality measures, but ...
- in reality, both affect both.

Quantity

- Two-machine, one-buffer production line.
- All production is perfect quality.
- The machines are unreliable they fail at random times and are repaired at random times.
- We vary the buffer size N and observe its effect on the production rate P.
- Observation: the production rate increases monotonically up to a limit.

Machine Reliability Dynamics

Quantity

Simplest model

Statistical Process Control

Quality

- Goal is to determine when a process has gone out of control .
- Upper and lower control limits (UCL, LCL) usually chosen to be 6σ apart.
- Basic idea: which is the sample comes from?

Inspection

- Motivation why inspect?
 - ⋆ To take action on parts (accept, rework, or scrap).
 - ★ To take action on machines (leave alone or repair).
- Effects of perfect inspection:
 - ★ Bad parts rejected or reworked.
 - * Machine maintained when necessary.
- Effects of inspection errors:
 - ★ Some good parts rejected or reworked; some bad parts accepted.
 - ⋆ Unnecessary downtime and/or more bad parts.

Quality Dynamics

- Definition: How the quality of a machine changes over time.
- The quality literature distinguishes between common causes and special causes. (Other terms are also used.)
 - ★ Common cause: successive failures are equally likely, regardless of past history.
 - ★ Special cause: something happens to the machine, and failures become much more likely.
- We use this concept to extend quantity models.

Quality Dynamics

Machine Quality Dynamics

Simplest model

Versions:

- The Good state has 100% yield and the Bad state has 0% yield.
- The Good state has high yield and the Bad state has low yield.

Opinions

- Quantity-oriented people tend to assume that increasing a buffer increases the production rate.
- Quality-oriented people tend to assume that increasing a buffer decreases the production rate of good items.
- However, we have found that the picture is not so simple.

- Two-machine lines.
- The first machine sometimes does bad operations.

• The second machine does inspection.

- We look at three cases ie, three sets of machines.
- We vary N and plot effective production rate the production rate of good parts.

Effective production rate = production rate of good parts.

Mixed-Benefit Buffer

Inspections

How many inspections should there be? And where?

- Intuition: more inspection improves quality.
- Reality: increasing inspection can actually reduce quality, if it is not done intelligently.

Inspections

- We simulated a 15-machine, 14-buffer line.
- All machines and buffers were identical.
- We looked at all possible combinations of inspection stations in which all operations were inspected.
 - * Example: Inspection stations just after Machines 6, 9, 13, and 15.
 - ★ The first inspection looks at the results from Machines 1 6; the second looks at results from Machines 7 9; the third from 10 13; and the last from 14 and 15.
 - ★ There is always one inspection after Machine 15.
- A total of 2¹⁴=16,384 cases were simulated.

Inspections

Observations

Inspections

- Choosing the optimal set of locations for 3 inspection stations is better than the worst set of locations for 9 stations.
- Having 15 stations is only marginally better than having 8 stations, if the 8 stations are located well.

Conclusions

- Combining Q/Q produces unexpected behavior.
- Yield is a function of the system (including the sizes of buffers) and not just of the machines.
- System yield is not a simple function of machine yields.
- This is an important area with many kinds of problems to be studied.

Inspection Strategy

Current Work

- When should we maintain a machine?
- If we repair a machine immediately after seeing one bad part, we may repair machines when they are good.
- If we wait until we see n bad parts, we may make unnecessary bad parts.
- Common ad hoc methods:
 - \star Repair for some fixed n.
 - ★ Repair after inspection measurement has k successive increases or decreases.

Current Work

Inspection Strategy

Bayes risk methods

- Bayesian statistics allows us to update the probability of each machine state after each inspection.
- Bayes risk methods use Bayesian statistics to determine the best time to take an action — such as starting a repair — after obtaining measurement information.
- This leads to a closed-loop strategy.

Future Work

- The three-state machine model is much too simple.
- One extension is

• ... but even this leaves out important features.

Future Work

Another extension is

This allows more general wear or aging models.

Future Work

A maintenance strategy could be modeled as

if we have perfect knowledge of the machine state.

Future Work

Bayesian statistics

 If the machine state is not known perfectly, a better strategy might be:

 Here, the machine quality state might be estimated according to the time since the last maintenance, and/or according to measurement data.

Future Work

Bayesian statistics

 Model with a parameter (eg, tool diameter) that varies with the time since the last maintenance (tool change).

Validation and application

Future Work

 Collect data from factories to assess the realism of our models and methods.

- Apply our results to factory design.
- This activity is already under way with GM.

MIT OpenCourseWare https://ocw.mit.edu

2.854 / 2.853 Introduction To Manufacturing Systems Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.