
Chapter 7

Logic of behavior:
Sheaves, toposes, and internal

languages

7.1 How can we prove our machine is safe?

Imagine you are trying to design a system of interacting components. You wouldn’t be

doing this if you didn’t have a goal in mind: you want the system to do something, to

behave in a certain way. In other words, youwant to restrict its possibilities to a smaller

set: you want the car to remain on the road, you want the temperature to remain in

a particular range, you want the bridge to be safe for trucks to pass. Out of all the

possibilities, your system should only permit some.

Since your system ismadeof components that interact in specifiedways, the possible

behavior of the whole—in any environment—is determined by the possible behaviors

of each of its components in their local environments, together with the precise way in

which they interact.1 In this chapter, we will discuss a logic wherein one can describe

general types of behavior that occur over time, and prove properties of a larger-scale

system from the properties and interaction patterns of its components.

For example, suppose we want an autonomous vehicle to maintain a distance of

some safe ∈ R from other objects. To do so, several components must interact: a

sensor that approximates the real distance by an internal variable S′, a controller that

uses S′ to decide what action A to take, and a motor that moves the vehicle with an

1
The well-known concept of emergence is not about possibilities, it is about prediction. Predicting

the behavior of a system given predictions of its components is notoriously hard. The behavior of a

double pendulum is chaotic—meaning extremely sensitive to initial conditions—whereas those of the two

component pendulums are not. However, the set of possibilities for the double pendulum is completely

understood: it is the set of possible angular positions and velocities of both arms. When we speak of a

machine’s properties in this chapter, we alwaysmean the guarantees on its behaviors, not the probabilities

involved, though the latter would certainly be an interesting thing to contemplate.
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acceleration based on A. This in turn affects the real distance S, so there is a feedback

loop.

Consider the following model diagram:

sensor controller motor
S′ A S

S

(7.1)

In the diagram shown, the distance S is exposed by the exterior interface. This just

means we imagine S as being a variable that other components of a larger system may

want to interact with. We could have exposed no variables (making it a closed system)

or we could have exposed A and/or S′ as well.

In order for the system to ensure S ≥ safe, we need each of the components to

ensure a property of its own. But what are these components, ‘sensor, controller,

motor’, and what do they do?

One way to think about any of the components is to open it up and see how it is

put together; with a detailed study we may be able to say what it will do. For example,

just as S was exposed in the diagram above, one could imagine opening up the ‘sensor’

component box in Eq. (7.1) and seeing an interaction between subcomponents

radar

sonar

processor

sensor

S S′

This ability to zoom in and see a single unit as being composed of others is important

for design. But at the end of the day, you eventually need to stop diving down and

simply use the properties of the components in front of you to prove properties of

the composed system. Have no fear: everything we do in this chapter will be fully

compositional, i.e. compatible with opening up lower-level subsystems and using the

fractal-like nature of composition. However at a given time, your job is to design the

system at a given level, taking the component properties of lower-level systems as

given.

We will think of each component in terms of the relationship it maintains (through

time) between the changing values on its ports. “Whenever I see a flash, I will increase

pressure on the button”: this is a relationship I maintain through time between the

changing values on my eye port and my finger port. We will make this more precise

soon, but fleshing out the situation in Eq. (7.1) should help. The sensor maintains a

relationshipbetween S andS′, e.g. that the real distanceS and its internal representation

S′ differ by no more than 5cm. The controller maintains a relationship between S′ and
the action signal A, e.g. that if at any time S < safe, then within one second it will
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emit the signal A � go. The motor maintains a relationship between A and S, e.g. that
A dictates the second derivative of S by the formula(

(A � go) ⇒ ÜS > 1

)
∧

(
(A � stop) ⇒ ÜS � 0

)
. (7.2)

If we want to prove properties of the whole interacting system, then the relation-

ships maintained by each component need to be written in a formal logical language,

something like what we saw in Eq. (7.2). From that basis, we can use standard proof

techniques to combine properties of subsystems into properties of the whole. This is

our objective in the present chapter.

We have said how component systems, wired together in some arrangement, create

larger-scale systems. We have also said that, given the wiring arrangement, the be-

havioral properties of the component systems dictate the behavioral properties of the

whole. But what exactly are behavioral properties?

In this chapter, we want to give a formal language and semantics for a very gen-

eral notion of behavior. Mathematics is itself a formal language; the usual style of

mathematical modeling is to use any piece of this vast language at any time and for

any reason. One uses “human understanding” to ensure that the different models

are fitting together in an appropriate way when different systems are combined. The

present work differs in that we want to find a domain-specific language for modeling

behavior, any sort of behavior, and nothing but behavior. Unlike in the wide world of

math, we want a setting where the only things that can be discussed are behaviors.

For this, we will construct what is called a topos, which is a special kind of category.

Our topos, let’s call it BT, will have behavior types—roughly speaking, sets whose

elements can change through time—as its objects. An amazing fact about toposes2 is

that they come with an internal language that looks very much like the usual formal

language ofmathematics itself. Thus one candefinegraphs, groups, topological spaces,

etc. in any topos. But in BT, what we call graphs will actually be graphs that change

through time, and similarly what we call groups and spaces will actually be groups

and spaces that change through time.

The topos BT not only has an internal language, but also a mathematical semantics

using the notion of sheaves. Technically, a sheaf is a certain sort of functor, but one can

imagine it as a space of possibilities, varying in a controlled way; in our case it will be

a space of possible behaviors varying in a certain notion of time. Every property we

prove in our logic of behavior types will have meaning in this category of sheaves.

When discussing systems and components—such as sensors, controllers, motors,

etc.—we mentioned behavior types; these will be the objects in the topos BT. Every

wire in the picture below will stand for a behavior type, and every box X will stand for

a behavioral property, a relation that X maintains between the changing values on its

2
The plural of topos is often written topoi, rather than toposes. This seems a bit fancy for our taste.

As Johnstone suggests in [Joh77], we might ask those who “persist in talking about topoi whether, when

they go out for a ramble on a cold day, they carry supplies of hot tea with them in thermoi.” It’s all in

good fun; either term is perfectly reasonable and well-accepted.
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ports.

sensor controller motor
S′ A A

S

For example we could imagine that

• S (wire): The behavior of S over a time-interval [a , b] is that of all continuous

real-valued functions [a , b] → R.

• A (wire): The behavior of A over a time-interval [a , b] is all piecewise constant

functions, taking values in the finite set such as {go, stop}.
• controller (box): the relation {(S′,A) | Eq. (7.2)}, i.e. all behavioral pairs (S′,A)

that conform to what we said our controller is supposed to do in Eq. (7.2).

7.2 The category Set as an exemplar topos

We want to think about a very abstract sort of thing, called a topos, because we will

see that behavior types form a topos. To get started, we begin with one of the easiest

toposes to think about, namely the topos Set of sets. In this section we will discuss

commonalities between sets and every other topos. We will go into some details about

the category of sets, so as to give intuition for other toposes. In particular, we’ll pay

careful attention to the logic of sets, because we eventually want to understand the

logic of behaviors.

Indeed, logic and sets are closely related. For example, the logical statement—more

formally known as a predicate—likes_cats defines a function from the set P of people

to the set B � {false, true} of truth values, where Brendan ∈ P maps to true because

he likes cats whereas Ursula ∈ P maps to false because she does not. Alternatively,

likes_cats also defines a subset of P, consisting of exactly the people that do like cats

{p ∈ P | likes_cats(p)}.

In terms of these subsets, logical operations correspond to set operations, e.g. AND

corresponds to intersection: indeed, the set of people for (mapped to true by) the pred-

icate likes_cats_AND_likes_dogs is equal to the intersection of the set for likes_cats

and the set for likes_dogs.

We saw in Chapter 3 that such operations, which are examples of database queries,

can be described in terms of limits and colimits in Set. Indeed, the category Set has
many such structures andproperties, which togethermake logic possible in that setting.

In this section we want to identify these properties, and show how logical operations

can be defined using them.

Why would we want to abstractly find such structures and properties? In the next

section, we’ll start our search for other categories that also have them. Such categories,

called toposes, will be Set-like enough to do logic, but have much more complex and
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interesting semantics. Indeed, we will discuss one whose logic allows us to reason not

about properties of sets, but about behavioral properties of very general machines.

7.2.1 Set-like properties enjoyed by any topos

Although we will not prove it in this book, toposes are categories that are similar to

Set in many ways. Here are some facts that are true of any topos E:

1. E has all limits,

2. E has all colimits,

3. E is cartesian closed,

4. E has epi-mono factorizations,

5. E has a subobject classifier 1

true−−−→ Ω.

In particular, since Set is a topos, all of the above facts are true for E � Set. Our first

goal is to briefly review these concepts, focusing most on the subobject classifier.

Limits and colimits. We discussed limits and colimits briefly in Section 3.4.2, but

the basic idea is that one can make new objects from old by taking products, using

equations to define subobjects, forming disjoint unions, and taking quotients.object

0. One of the most important types of limit (resp. colimit) is that of pullbacks (resp.

pushouts); see Example 3.99 and Definition 6.19. For our work below, we’ll need to

know a touch more about pullbacks than we have discussed so far, so let’s begin there.

Suppose that C is a category and consider the diagrams below:

A B C

D E F

y
A B C

D E F

y

In the left-hand square, the corner symbol y unambiguously means that the square

(B, C, E, F) is a pullback. But in the right-hand square, does the corner symbol mean

that (A, B,D , E) is a pullback or that (A, C,D , F) is a pullback? It’s ambiguous, but as

we next show, it becomes unambiguous if the right-hand square is a pullback.

Proposition 7.3. In the commutative diagram below, suppose that the (B, C, B′, C′)
square is a pullback:

A B C

A′ B′ C′

y y

Then the (A, B,A′, B′) square is a pullback iff the (A, C,A′, C′) rectangle is a pullback.

Exercise 7.4. Prove Proposition 7.3 using the definition of limit from Section 3.4.2. ♦
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Epi-mono factorizations. The abbreviation ‘epi’ stands for epimorphism, and the ab-

breviation ‘mono’ stands for monomorphism. Epimorphisms are maps that act like

surjections, and monomorphisms are maps that act like injections.3 We can define

them formally in terms of pushouts and pullbacks.

Definition 7.5. Let C be a category, and let f : A → B be a morphism. It is called a

monomorphism (resp. epimorphism) if the square to the left is a pullback (resp. the square

to the right is a pushout):

A A A B

A B B B

idA

idA f

f

f idB

f

y

idB

p

Exercise 7.6. Show that in Set, monomorphisms are just injections:

1. Show that if f is a monomorphism then it is injective.

2. Show that if f : A→ B is injective then it is a monomorphism. ♦

Exercise 7.7.
1. Show that the pullback of an isomorphism along any morphism is an isomor-

phism. That is, suppose that i : B′ → B is an isomorphism and f : A→ B is any

morphism. Show that i′ is an isomorphism, in the following diagram:

A′ B′

A B

f ′

i′ � i�

f

y

2. Show that for any map f : A→ B, the square shown is a pullback:

A B

A B

f

f

y ♦

Exercise 7.8. Suppose the following diagram is a pullback in a category C:

A′ A

B′ B

1

f ′ f

h

y

Use Proposition 7.3 and Exercise 7.7 to show that if f is a monomorphism, then so is

f ′. ♦

3
Surjections are sometimes called ‘onto’ and injections are sometimes called ‘one-to-one’, hence the

Greek prefixes epi and mono.
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Now that we have defined epimorphisms and monomorphisms, we can say what

epi-mono factorizations are. We say that a morphism f : C→ D in E has an epi-mono

factorization if it has an ‘image’; that is, there is an object im( f ), an epimorphism

C � im( f ), and a monomorphism im( f )� D, whose composite is f .
In Set, epimorphisms are surjections and monomorphisms are injections. Every

function f : C → D may be factored as a surjective function onto its image im( f ) �
{ f (c) | c ∈ C}, followed by the inclusion of this image into the codomain D. Moreover,

this factorization is unique up to isomorphism.

Exercise 7.9. Factor the following function f : 3→ 3 as an epimorphism followed by a

monomorphism.

•
•
•

•
•
•

♦

This is the case in any topos E: for any morphism f : c → d, there exists an

epimorphism e and a monomorphism m such that f � (e # m) is their composite.

Cartesian closed. A category C being cartesian closed means that C has a symmetric

monoidal structure given by products, and it is monoidal closed with respect to this.

(We previously saw monoidal closure in Definition 2.79 (for preorders) and Proposi-

tion 4.60, as a corollary of compact closure.) Slightly more down-to-earth, cartesian

closure means that for any two objects C,D ∈ C, there is a ‘hom-object’ DC ∈ C and a

natural isomorphism for any A ∈ C:

C(A × C,D) � C(A,DC) (7.10)

Think of it this way. Suppose you’re A and I’m C, and we’re interacting through

some game f (−,−) : A × C → D: for whatever action a ∈ A that you take and action

c ∈ C that I take, f (a , c) is some value in D. Since you’re self-centered but loving, you

think of this situation as though you’re creating a game experience for me. When you

do a, you make a game f (a ,−) : C→ D for me alone. In the formalism, DC
represents

the set of games for me. So now you’ve transformed a two-player game, valued in D,

into a one-player game, you’re the player, valued in... one player games valued in D.

This transformation is invertible—you can switch your point of view at will—and it’s

called currying. This is the content of Example 3.72.

Exercise 7.11. Let V � (V, ≤, I , ⊗) be a (unital, commutative) quantale—see Defini-

tion 2.90—and suppose it satisfies the following for all v , w , x ∈ V :

• v ≤ I,
• v ⊗ w ≤ v and v ⊗ w ≤ w, and

• if x ≤ v and x ≤ w then x ≤ v ⊗ w.

1. Show that V is a cartesian closed category, in fact a cartesian closed preorder.

2. Can every cartesian closed preorder be obtained in this way? ♦
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Subobject classifier. The concept of a subobject classifier requires more attention,

because its existence has huge consequences for a category C. In particular, it creates

the setting for a rich system of higher order logic to exist inside C; it does so by providing

some things called ‘truth values’. The higher order logic manifests in its fully glory

when C has finite limits and is cartesian closed, because these facts give rise to the

logical operations on truth values.4 In particular, the higher order logic exists in any

topos.

We will explain subobject classifiers in as much detail as we can; in fact, it will be

our subject for the rest of Section 7.2.

7.2.2 The subobject classifier

Before giving the definition of subobject classifiers, recall that monomorphisms in Set
are injections, and any injection X � Y is isomorphic to a subset of Y. This gives

a simple and useful way to conceptualize monomorphisms into Y when reading the

following definition: it will do no harm to think of them as subobjects of Y.

Definition 7.12. Let E be a category with finite limits, i.e. with pullbacks and a ter-

minal object 1. A subobject classifier in E consists of an object Ω ∈ E, together with a

monomorphism true : 1→ Ω, satisfying the following property: for any objects X and

Y andmonomorphism m : X� Y in E, there is a unique morphism pmq : Y → Ω such

that the diagram on the left of Eq. (7.13) is a pullback in E:

X 1

Y Ω

!

m true

pmq

y
{Y | p} 1

Y Ω

!

true

p

y
(7.13)

We refer to pmq as the characteristic map of m, orwe say that pmq classifies m. Conversely,

given any map p : Y → Ω, we denote the pullback of true as on the right of Eq. (7.13).

A predicate on Y is a morphism Y → Ω.

Definition 7.12 is a bit difficult to get one’s mind around, partly because it is hard

to imagine its consequences. It is like a superdense nugget from outer space, and

through scientific explorations in the latter half of the 20th century, we have found that

it brings super powers to whichever categories possess it. We will explain some of the

consequences below, but very quickly, the idea is the following.

Whena categoryhas a subobject classifier, it provides a translator, turning subobjects

of any object Y into maps from that Y to the particular object Ω. Pullback of the

4
Acategory that hasfinite limits, is cartesian closed, andhas a subobject classifier is called an elementary

topos. We will not discuss these further, but they are the most general notion of topos in ordinary category

theory. When someone says topos, you might ask “Grothendieck topos or elementary topos?,” because

there does not seem to be widespread agreement on which is the default.
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monomorphism true : 1→ Ω provides a translator going back, turning maps Y → Ω

into subobjects of Y. We can replace our fantasy of the superdense nugget with a

slightly more refined story: “any object Y understands itself—its parts and the logic of

how they fit together—by asking questions of the oracle Ω, looking for what’s true.”

Or to fully be precise but dry, “subobjects of Y are classified by predicates on Y.”

Let’s move from stories and slogans to concrete facts.

The subobject classifier in Set. Since Set is a topos, it has a subobject classifier. It

will be a set with supposedly wonderful properties; what set is it?

The subobject classifier in Set is the set of booleans,

ΩSet B B � {true, false}. (7.14)

So in Set, the truth values are true and false.

By definition (Def. 7.12), the subobject classifier comes equipped with a morphism,

generically called true : 1 → Ω; in the case of Set it is played by the function 1 →
{true, false} that sends 1 to true. In other words, the morphism true is aptly named

in this case.

For sets, monomorphism just means injection, as we mentioned above. So Defini-

tion 7.12 says that for any injective function m : X� Y between sets, we are supposed

to be able to find a characteristic function pmq : Y → {true, false} with some sort of

pullback property. We propose the following definition of pmq:

pmq(y) B
{
true if m(x) � y for some x ∈ X

false otherwise

In other words, if we think of X as a subobject of Y, then we make pmq(y) equal to
true iff y ∈ X.

In particular, the subobject classifier property turns subsets X ⊆ Y into functions

p : Y → B, and vice versa. How it works is encoded in Definition 7.12, but the basic

idea is that X will be the set of all things in Y that p sends to true:

X � {y ∈ Y | p(y) � true}. (7.15)

This might help explain our abstract notation {Y | p} in Eq. (7.13).

Exercise 7.16. Let X � N � {0, 1, 2, . . .} and Y � Z � {. . . ,−1, 0, 1, 2, . . .}; we have

X ⊆ Y, so consider it as a monomorphism m : X � Y. It has a characteristic function

pmq : Y → B, as in Definition 7.12.

1. What is pmq(−5) ∈ B?
2. What is pmq(0) ∈ B? ♦

Exercise 7.17.
1. Consider the identity function idN : N→ N. It is an injection, so it has a charac-

teristic function pidNq : N→ B. Give a concrete description of pidNq, i.e. its exact

value for each natural number n ∈ N.
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2. Consider the unique function !N : � → N from the empty set. Give a concrete

description of p!Nq : N→ B. ♦

7.2.3 Logic in the topos Set

As we said above, the subobject classifier of any topos E gives the setting in which to

do logic. Before we explain a bit about how topos logic works in general, we continue

to work concretely by focusing on logic in the topos Set.

Obtaining the AND operation. Consider the function 1 → B × B picking out the

element (true, true). This is a monomorphism, so it defines a characteristic function

p(true, true)q : B×B→ B. What function is it? By Eq. (7.15) the only element ofB×B
that can be sent to true is (true, true). Thus p(true, true)q(P,Q) ∈ B must be given

by the following truth table

P Q p(true, true)q(P,Q)
true true true

true false false

false true false

false false false

This is exactly the truth table for the AND of P and Q, i.e. for P ∧ Q. In other words,

p(true, true)q � ∧. Note that this defines ∧ as a function ∧ : B × B→ B, and we use

the usual infix notation x ∧ y B ∧(x , y).

Obtaining the OR operation. Let’s go backwards this time. The truth table for the

OR of P and Q, i.e. that of the function ∨ : B × B→ B defining OR, is:

P Q P ∨Q
true true true

true false true

false true true

false false false

(7.18)

If we wanted to obtain this function as the characteristic function pmq of some subset

m : X ⊆ B × B, what subset would X be? By Eq. (7.15), X should be the set of y ∈ Y
that are sent to true. Thus m is the characteristic map for the three element subset

X � {(true, true), (true, false), (false, true)} ⊆ B × B.

To prepare for later generalization of this idea in any topos, we want a way of thinking

of X only in terms of properties listed at the beginning of Section 7.2.1. In fact, one can

think of X as the union of {true} ×B and B× {true}—a colimit of limits involving the

subobject classifier and terminal object. This description will construct an analogous

subobject of Ω ×Ω, and hence classify a map Ω ×Ω→ Ω, in any topos E.
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Exercise 7.19. Every boolean has a negation, ¬false � true and ¬true � false. The
function ¬ : B→ B is the characteristic function of some thing, (*?*).

1. What sort of thing should (*?*) be? For example, should ¬ be the characteristic

function of an object? A topos? Amorphism? A subobject? A pullback diagram?

2. Now that you know the sort of thing (*?*) is, which thing of that sort is it? ♦

Exercise 7.20. Given two booleans P,Q, define P ⇒ Q to mean P � (P ∧Q).
1. Write down the truth table for the statement P � (P ∧Q):

P Q P ∧Q P � (P ∧Q)
true true ? ?

true false ? ?

false true ? ?

false false ? ?

2. If you already have an idea what P ⇒ Q should mean, does it agree with the last

column of table above?

3. What is the characteristic function m : B × B→ B for P ⇒ Q?

4. What subobject does m classify? ♦

Exercise 7.21. Consider the sets E B {n ∈ N | n is even}, P B {n ∈ N | n is prime},
and T B {n ∈ N | n ≥ 10}. Each is a subset of N, so defines a function N→ B.

1. What is pEq(17)?
2. What is pPq(17)?
3. What is pTq(17)?
4. Name the smallest three elements in the set classified by (pEq ∧ pPq) ∨ pTq. ♦

Review. Let’s take stock of where we are and where we’re going. In Section 7.1, we

set out our goal of proving properties about behavior, and we said that topos theory

is a good mathematical setting for doing that. We are now at the end of Section 7.2,

which was about Set as an examplar topos. What happened?

In Section 7.2.1, we talked about properties of Set that are enjoyed by any topos:

limits and colimits, cartesian closure, epi-mono factorizations, and subobject classifiers.

Then in Section 7.2.2 we launched into thinking about the subobject classifier in general

and in the specific topos Set, where it is the set B of booleans because any subset of

Y is classified by a specific predicate p : Y → B. Finally, in Section 7.2.3 we discussed

how to understand logic in terms of Ω: there are various maps ∧,∨,⇒ : Ω ×Ω → Ω

and ¬ : Ω→ Ω etc., which serve as logical connectives. These are operations on truth

values.

We have talked a lot about toposes, but we’ve only seen one so far: the category of

sets. But we’ve actually seenmore without knowing it: the category C-Inst of instances
on any database schema fromDefinition 3.60 is a topos. Such toposes are called presheaf
toposes and are fundamental, but we will focus on sheaf toposes, because our topos of

behavior types will be a sheaf topos.
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Sheaves are fascinating, but highly abstract mathematical objects. They are not for

the faint of mathematical heart (those who are faint of physical heart are welcome to

proceed).

7.3 Sheaves

Sheaf theory began before category theory, e.g. in the form of something called “local

coefficient systems for homology groups.” However its modern formulation in terms

of functors and sites is due to Grothendieck, who also invented toposes.

The basic idea is that rather than study spaces, we should study what happens on
spaces. A space is merely the ‘site’ at which things happen. For example, if we think

of the plane R2
as a space, we might examine only points and regions in it. But if we

think of R2
as a site where things happen, then we might think of things like weather

systems throughout the plane, or sand dunes, or trajectories and flows of material.

There are many sorts of things that can happen on a space, and these are the sheaves:

a sheaf on a space is roughly “a sort of thing that can happen on the space.” If we want

to think about points or regions from the sheaf perspective, we would consider them

as different points of view on what’s happening. That is, it’s all about what happens

on a space: the parts of the space are just perspectives from which to watch the show.

This is reminiscent of databases. The schema of a database is not the interesting

part; the data is what’s interesting. To be clear, the schema of a database is a site—it’s

acting like the space—and the category of all instances on it is a topos. In general, we

can think of any small category C as a site; the corresponding topos is the category of

functors Cop → Set.5 Such functors are called presheaves on C.

Did you notice that we just introduced a huge class of toposes? For any category C,

we said there is a topos of presheaves on it. So before we go on to sheaves, let’s discuss

this preliminary topic of presheaves. We will begin to develop some terminology and

ways of thinking that will later generalize to sheaves.

7.3.1 Presheaves

Recall the definition of functor and natural transformation from Section 3.3. Presheaves

are just functors, but they have special terminology that leads us to think about them

in a certain geometric way.

Definition 7.22. Let C be a small category. A presheaf P on C is a functor P : Cop → Set.
To each object c ∈ C, we refer to the set P(c) as the set of sections of P over c. To each

morphism f : c′→ c, we refer to the function P( f ) : P(c) → P(c′) as the restriction map
along f . For any section s ∈ P(c), we may denote P( f )(s) ∈ P(c′), i.e. its restriction

along f , by s
��

f .

5
The category of functors C→ Set is also a topos: use Cop as the defining site.
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If P and Q are presheaves, a morphism α : P → Q between them is a natural trans-

formation of functors

Cop Set.
P

Q

α

Example 7.23. Let ArShp be the category shown below:

ArShp B
Vertex• Pure Arrow•

src

tgt

The reason we call our category ArShp is that we can imagine of it as an ‘arrow shape.’

Pure ArrowB

VertexB

src tgt

(7.24)

A presheaf on ArShp is a functor I : ArShpop → Set, which is a database instance on

ArShpop

. Note that ArShpop

is what we called Gr in Section 3.3.5; there we showed

that database instances on Gr—i.e. presheaves on ArShp— are just directed graphs,

e.g.

P B

• • • •

• • • •
: ArShpop → Set

Thinking of presheaves on any category C, it often makes sense to imagine the

objects of C as shapes of some sort, and the morphisms of C as continuous maps

between shapes, just like we did for the arrow shape in Eq. (7.24). In that context, one

can think of a presheaf P as a kind of lego construction: P is built out of the shapes in C,

connected together using the morphisms in C. In the case where C is the arrow shape,

a presheaf is a graph. So this would say that a graph is a sort of lego construction,

built out of vertices and arrows connected together using the inclusion of a vertex as

the source or target of an arrow. Can you see it?

This statement can bemade pretty precise; thoughwe cannot go through it here, the

above lego idea is summarized by the formal statement that “the category of presheaves

on C is the free colimit completion of C.” Ask a friendly neighborhood category theorist

for details.

Howeverone thinksofpresheaves—in termsof legoassemblies ordatabase instances—

they’re relatively straightforward. The difference between presheaves and sheaves is
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that sheaves take into account some sort of ‘covering information.’ The trivial notion

of covering is to say that every object covers itself and nothing more; if one uses this

trivial covering, presheaves and sheaves are the same thing. In our behavioral context

wewill need a non-trivial notion of covering, so sheaves and presheaves will be slightly

different. Our next goal is to understand sheaves on a topological space.

7.3.2 Topological spaces

We said in Section 7.3 that, rather than study spaces, we consider spaces as mere ‘sites’

on which things happen. We also said the things that can happen on a space are called

sheaves, and always form a type of category called a topos. To define a topos of sheaves,

we must start with the site on which they exist.

Sites are very abstract mathematical objects, and we will not make them precise in

this book. However, one of the easiest sorts of sites to think about are those coming

from topological spaces: every topological space naturally has the structure of a site.

We’ve talked about spaces for a while without making them precise; let’s do so now.

Definition 7.25. Let X be a set, and let P(X) � {U ⊆ X} denote its set of subsets. A

topology on X is a subset Op ⊆ P(X), elements of which we call open sets,6 satisfying the

following conditions:

(a) Whole set: the subset X ⊆ X is open, i.e. X ∈ Op.
(b) Binary intersections: if U,V ∈ Op then (U ∩ V) ∈ Op.
(c) Arbitrary unions: if I is a set and if we are given an open set Ui ∈ Op for each i,

then their union is also open,

( ⋃
i∈I Ui

)
∈ Op. We interpret the particular case

where I � � to mean that the empty set is open: � ∈ Op.
If U �

⋃
i∈I Ui , we say that (Ui)i∈I covers U.

A pair (X,Op), where X is a set and Op is a topology on X, is called a topological
space.

A continuous function between topological spaces (X,OpX) and (Y,OpY) is a function
f : X → Y such that for every U ∈ OpY , the preimage f −1(U) is in OpX .

At the very end of Section 7.3.1 we mentioned how sheaves differ from presheaves

in that they take into account ‘covering information.’ The notion of covering an open

set by a union of other open sets was defined in Definition 7.25, and it will come into

play when we define sheaves in Definition 7.35.

Example 7.26. The usual topology Op on R2
is based on ‘ε-balls.’ For any ε ∈ R with

ε > 0, and any point p � (x , y) ∈ R2
, define the ε-ball centered at p to be:

B(p; ε) B {p′ ∈ R2 | d(p , p′) < ε}7

6
In other words, we refer to a subset U ⊆ X as open if U ∈ Op.
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In other words, B(x , y; ε) is the set of all points within ε of (x , y).
For an arbitrary subsetU ⊆ R2

, we call it open andput it inOp if, for every (x , y) ∈ U
there exists a (small enough) ε > 0 such that B(x , y; ε) ⊆ U.

x

y
(x , y)

ε

an ε-ball centered at p � (x , y)

U

an open set U ⊆ R2
, a point p � (x , y) ∈ U,

and an ε-ball B(x , y; ε) ⊆ U.

The same ideaworks ifwe replaceR2
with any othermetric space X (Definition 2.51):

it can be considered as a topological space where the open sets are subsets U such that

for any p ∈ U there is an ε-ball centered at p and contained in U. So every metric space

can be considered as a topological space.

Exercise 7.27. Consider the set R. It is a metric space with d(x1 , x2) B |x1 − x2 |.
1. What is the 1-dimensional analogue of ε-balls as found in Example 7.26? That is,

for each x ∈ R, define B(x , ε).
2. When is an arbitrary subset U ⊆ R called open, in analogy with Example 7.26?

3. Find three open sets U1, U2, and U in R, such that (Ui)i∈{1,2} covers U.

4. Find an open set U and a collection (Ui)i∈I of opens sets where I is infinite, such
that (Ui)i∈I covers U. ♦

Example 7.28. For any set X, there is a ‘coarsest’ topology, having as few open sets as

possible: Op
crse

� (�,X). There is also a ‘finest’ topology, having as many open sets as

possible: Op
fine

� P(X). The latter, (X,P(X)) is called the discrete space on the set X.

Exercise 7.29.
1. Verify that for any setX, whatwe calledOp

crse
in Example 7.28 really is a topology,

i.e. satisfies the conditions of Definition 7.25.

2. Verify also that Op
fine

really is a topology.

3. Show that if (X,P(X)) is discrete and (Y,OpY) is any topological space, then every

function X → Y is continuous. ♦

Example 7.30. There are four topologies possible on X � {1, 2}. Two are Op
crse

and

7
Here, d((x , y), (x′, y′)) B

√
(x − x′)2 + (y − y′)2 is the usual ‘Euclidean distance’ between two points.

One can generalize d to any metric.
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Op
fine

from Example 7.28. The other two are:

Op
1
B {�, {1},X} and Op

2
B {�, {2},X}

The two topological spaces ({1, 2},Op
1
) and ({1, 2},Op

2
) are isomorphic; either one

can be called the Sierpinski space.

The open sets of a topological space form a preorder. Given a topological space

(X,Op), the set Op has the structure of a preorder using the subset relation, (Op, ⊆).
It is reflexive because U ⊆ U for any U ∈ Op, and it is transitive because if U ⊆ V and

V ⊆ W then U ⊆ W .

Recall from Section 3.2.3 that we can regard any preorder, and hence Op, as a

category: its objects are the open setsU and for anyU,V the set ofmorphismsOp(U,V)
is empty if U 6⊆ V and it has one element if U ⊆ V .

Exercise 7.31. Recall the Sierpinski space, say (X,Op
1
) from Example 7.30.

1. Write down the Hasse diagram for its preorder of opens.

2. Write down all the covers. ♦

Exercise 7.32. Given any topological space (X,Op), any subset Y ⊆ X can be given the

subspace topology, call itOp
?∩Y . This topology defines any A ⊆ Y to be open, A ∈ Op

?∩Y ,

if there is an open set B ∈ Op such that A � B ∩ Y.

1. Find a B ∈ Op that shows that the whole set Y is open, i.e. Y ∈ Op
?∩Y .

2. Show that Op
?∩Y is a topology in the sense of Definition 7.25.8

3. Show that the inclusion function Y ↪→ X is a continuous function. ♦

Remark 7.33. Suppose (X,Op) is a topological space, and consider the preorder (Op, ⊆)
of open sets. It turns out that (Op, ⊆,X,∩) is always a quantale in the sense of

Definition 2.79. We will not need this fact, but we invite the reader to think about

it a bit in Exercise 7.34.

Exercise 7.34. In Sections 2.3.2 and 2.3.3 we discussed how Bool-categories are pre-

orders andCost-categories are Lawveremetric spaces, and in Section 2.3.4we imagined

interpretations of V-categories for other quantales V.

If (X,Op) is a topological space andV the corresponding quantale as in Remark 7.33,

how might we imagine a V-category? ♦

7.3.3 Sheaves on topological spaces

To summarizewherewe are, a topological space (X,Op) is a setX togetherwith a bunch

of subsets we call ‘open’; these open subsets form a preorder—and hence category—

denoted Op. Sheaves on X will be presheaves on Op with a special property, aptly

named the ‘sheaf condition.’

8
Hint 1: for any set I, collection of sets (Ui)i∈I with Ui ⊆ X, and set V ⊆ X, one has (⋃i∈I Ui) ∩ V �⋃

i∈I (Ui ∩ V). Hint 2: for any U,V,W ⊆ X, one has (U ∩W) ∩ (V ∩W) � (U ∩ V) ∩W .
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Recall the terminology and notation for presheaves: a presheaf on Op is a functor

P : Opop → Set. Thus to every open set U ∈ Op we have a set P(U), called the set

of sections over U, and to every inclusion of open sets V ⊆ U we have a function

P(U) → P(V) called the restriction. If s ∈ P(U) is a section over U, we may denote its

restriction to V by s
��
V . Recall that we say a collection of open sets (Ui)i∈I covers an open

set U if U �
⋃

i∈I Ui .

We are now ready to give the following definition, which comes in several waves:

we first define matching families, then gluing, then sheaf condition, then sheaf, and

finally the category of sheaves.

Definition 7.35. Let (X,Op) be a topological space, and let P : Opop → Set be a

presheaf on Op.
Let (Ui)i∈I be a collection of open sets Ui ∈ Op covering U. A matching family (si)i∈I

of P-sections over (Ui)i∈I consists of a section si ∈ P(Ui) for each i ∈ I, such that for every

i , j ∈ I we have

si
��
Ui∩U j

� s j
��
Ui∩U j

.

Given a matching family (si)i∈I for the cover U �
⋃

i∈I Ui , we say that s ∈ P(U) is a
gluing, or glued section, of the matching family if s

��
Ui

� si holds for all i ∈ I.
If there exists a unique gluing s ∈ P(U) for everymatching family (si)i∈I , we say that

P satisfies the sheaf condition for the cover U �
⋃

i∈I Ui . If P satisfies the sheaf condition

for every cover, we say that P is a sheaf on (X,Op).
Thus a sheaf is just a presheaf satisfying the sheaf condition for every open cover.

If P and Q are sheaves, then a morphism f : P → Q between these sheaves is just a

morphism—that is, a natural transformation—between their underlying presheaves.

We denote by Shv(X,Op) the category of sheaves on X.

The category of sheaves on X is a topos, but we’ll get to that.

Example 7.36. Here is a funny—but very important—special case to which the notion

of matching family applies. We do not give this example for intuition, but because (to

emphasize) it’s an important and easy-to-miss case. Just like the sum of no numbers

is 0 and the product of no numbers is 1, the union of no sets is the empty set. Thus if

we take U � � ⊆ X and I � �, then the empty collection of subsets (one for each i ∈ I,
of which there are none) covers U. In this case the empty tuple () counts a matching

family of sections, and it is the only matching family for the empty cover of the empty

set.

In other words, in order for a presheaf P : Opop → Set to be a sheaf, a necessary (but

rarely sufficient) condition is that P(�) � {()}, i.e. P(�)must be a set with one element.

Extended example: sections of a function. This example is for intuition, and gives a

case where the ‘section’ and ‘restriction’ terminology are easy to visualize.
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Consider the function f : X → Y shown below, where each element of X is sent to

the element of Y immediately below it. For example, f (a1) � f (a2) � a, f (b1) � b, and
so on.

•a •b •c •d •eY B

•
a1

•
a2

•
b1

•
b2

•
b3

•
c1 •

e1

•
e2X B

f (7.37)

For each point y ∈ Y, the preimage set f −1(y) ⊆ X above it is often called the fiber over
y. Note that different f ’s would arrange the eight elements of X differently over Y:

elements of Y would have different fibers.

Exercise 7.38. Consider the function f : X → Y shown in Eq. (7.37).

1. What is the fiber of f over a?
2. What is the fiber of f over c?
3. What is the fiber of f over d?
4. Gave an example of a function f ′ : X → Y for which every fiber has either one or

two elements. ♦

Let’s consider X and Y as discrete topological spaces, so every subset is open, and

f is automatically continuous (see Exercise 7.29). We will think of f as an arrangement

of X over Y, in terms of fibers as above, and use it to build a sheaf on Y. To do this,

we begin by building a presheaf—i.e. a functor Sec f : Op(Y)op → Set—and then we’ll

prove it’s a sheaf.

Define the presheaf Sec f on an arbitrary subset U ⊆ Y by:

Sec f (U) B {s : U → X | (s # f )(u) � u for all u ∈ U}.

One might describe Sec f (U) as the set of all ways to pick a ‘cross-section’ of the f
arrangement over U. That is, an element s ∈ Sec f (U) is a choice of one element per

fiber over U.

As an example, let’s say U � {a , b}. How many such s’s are there in Sec f (U)? To
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answer this, let’s clip the picture (7.37) and look only at the relevant part:

•
a
•
b

•
•
•
•
•

s1

•
a
•
b

•
•
•
•
•

s2

•
a
•
b

•
•
•
•
•

s3

•
a
•
b

•
•
•
•
•

s4

•
a
•
b

•
•
•
•
•

s5

•
a
•
b

•
•
•
•
•

s6

(7.39)

Looking at the picture (7.39), do you see how we get all cross-sections of f over U?

Exercise 7.40. Refer to Eq. (7.37).

1. Let V1 � {a , b , c}. Draw all the sections over it, i.e. all elements of Sec f (V1), as
we did in Eq. (7.39).

2. Let V2 � {a , b , c , d}. Again draw all the sections, Sec f (V2).
3. Let V3 � {a , b , d , e}. How many sections (elements of Sec f (V3)) are there? ♦

By now you should understand the sections of Sec f (U) for various U ⊆ X. This is

Sec f on objects, so you are half way to understanding Sec f as a presheaf. That is, as

a presheaf, Sec f also includes a restriction maps for every subset V ⊆ U. Luckily, the

restriction maps are easy: if V ⊆ U, say V � {a} and U � {a , b}, then given a section s
as in Eq. (7.39), we get a section over V by ‘restricting’ our attention to what s does on

{a}.

•
a

•
•

•
a

•
•

s1

��
V � s2

��
V � s3

��
V s4

��
V � s5

��
V � s6

��
V

(7.41)

Exercise 7.42.
1. Write out the sets of sections Sec f ({a , b , c}) and Sec f ({a , c}).
2. Draw lines from the first to the second to indicate the restriction map. ♦

Now we have understood Sec f as a presheaf; we next explain how to see that it

is a sheaf, i.e. that it satisfies the sheaf condition for every cover. To understand the

sheaf condition, consider the set U1 � {a , b} and U2 � {b , e}. These cover the set

U � {a , b , e} � U1 ∪U2. By Definition 7.35, a matching family for this cover consists of

a section over U1 and a section over U2 that agree on the overlap set, U1 ∩U2 � {b}.
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So consider s1 ∈ Sec f (U1) and s2 ∈ Sec f (U2) shown below.

•a •b

•
a1

•
a2

•
b1

•
b2

•
b3

11

•b •e

•
b1

•
b2

•
b3

•
e1

•
e2

12

(7.43)

Since sections 11 and 12 agree on the overlap—they both send b to b2—the two sections

shown in Eq. (7.43) can be glued to form a single section over U � {a , b , e}:

•a •b •e

•
a1

•
a2

•
b1

•
b2

•
b3

•
e1

•
e2

glued section

Exercise 7.44. Again let U1 � {a , b} and U2 � {b , e}, so the overlap is U1 ∩U2 � {b}.
1. Find a section s1 ∈ Sec f (U1) and a section s2 ∈ Sec f (U2) that do not agree on the

overlap.

2. For your answer (s1 , s2) in part 1, can you find a section s ∈ Sec f (U1 ∪ U2) such
that s

��
U1

� s1 and s
��
U2

� s2?

3. Find a section h1 ∈ Sec f (U1) and a section h2 ∈ Sec f (U2) that do agree on the

overlap, but which are different than our choice in Eq. (7.43).

4. Can you find a section h ∈ Sec f (U1 ∪U2) such that h
��
U1

� h1 and h
��
U2

� h2? ♦

Other examples of sheaves. The extended example above generalizes to any contin-

uous function f : X → Y between topological spaces.

Example 7.45. Let f : (X,OpX) → (Y,OpY) be a continuous function. Consider the

functor Sec f : Opop

Y → Set given by

Sec f (U) B {1 : U → X | 1 is continuous and (1 # f )(u) � u for all u ∈ U},
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The morphisms of OpY are inclusions V ⊆ U. Given 1 : U → X and V ⊆ U, what we

call the restriction of 1 to V is the usual thing we mean by restriction, the same as it

was in Eq. (7.41). One can again check that Sec f is a sheaf.

Example 7.46. A nice example of a sheaf on a space M is that of vector fields on M. If

you calculate the wind velocity at every point on Earth, you will have what’s called a

vector field on Earth. If you know the wind velocity at every point in Afghanistan and

I know the wind velocity at every point in Pakistan, and our calculations agree around

the border, then we can glue our information together to get the wind velocity over the

union of the two countries. All possible wind velocity fields over all possible open sets

of the Earth’s surface together form the sheaf of vector fields.

Let’s say this a bit more formally. A manifold M—you can just imagine a sphere

such as the Earth’s surface—always has something called a tangent bundle. It is a

space TM whose points are pairs (m , v), where m ∈ M is a point in the manifold and

v is a tangent vector emanating from it. Here’s a picture of one tangent plane—all the

tangent vectors emanating from some fixed point—on a sphere:

m
v

M B

⊆ TM

The tangent bundle TM includes the whole tangent plane shown above—including

the three vectors drawn on it—as well as the tangent plane at every other point on the

sphere.

The tangent bundle TM on a manifold M comes with a continuous map π : TM →
M back down to the manifold, sending (m , v) 7→ m. One might say that π “forgets the

tangent vector and just remembers the point it emanated from.” By Example 7.45, π

defines a sheaf Secπ. It could be called the sheaf of ‘tangent vector sections on M’, but

its usual name is the sheaf of vector fields on M. This is what we were describing when

we spoke of the sheaf of wind velocities on Earth, above. Given an open subset U ⊆ M,

an element v ∈ Secπ(U) is called a vector field over U because it continuously assigns

a tangent vector v(u) to each point u ∈ U. The tangent vector at u tells us the velocity

of the wind at that point.

Here’s a fun digression: in the case of a spherical manifold M like the Earth, it’s

possible to prove that for every open set U, as long as U , M, there is a vector field
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v ∈ Secπ(U) that is never 0: the wind could be blowing throughout U. However, a

theorem of Poincaré says that if you look at the whole sphere, there is guaranteed to be

a point m ∈ M at which the wind is not blowing at all. It’s like the eye of a hurricane or

perhaps a cowlick. A cowlick in someone’s hair occurs when the hair has no direction

to go, so it sticks up! Hair sticking up would not count as a tangent vector: tangent

vectors must start out lying flat along the head. Poincaré proved that if your head

was covered completely with inch-long hair, there would be at least one cowlick. This

difference between local sections (over arbitrary U ⊆ X) and global sections (over X)—

namely that hair can bewell combedwheneverU , X but cannot bewell combedwhen

U � X—can be thought of as a generative effect, and can be measured by cohomology

(see Section 1.5).

Exercise 7.47. If M is a sphere as in Example 7.46, we know from Definition 7.35 that

we can consider the category Shv(M) of sheaves on M; in fact, such categories are

toposes and these are what we’re getting to.

But are the sheaves on M the vector fields? That is, is there a one-to-one corre-

spondence between sheaves on M and vector fields on M? If so, why? If not, how are

sheaves on M and vector fields on M related? ♦

Example 7.48. For every topological space (X,Op), we have the topos of sheaves on it.

The topos of sets, which one can regard as the story of set theory, is the category of

sheaves on the one-point space {∗}. In topos theory, we see the category of sets—an

huge, amazing, and rich category—as corresponding to a single point. Imagine how

much more complex arbitrary toposes are, when they can take place on much more

interesting topological spaces (and in fact even more general ‘sites’).

Exercise 7.49. Consider the Sierpinski space ({1, 2},Op
1
) from Example 7.30.

1. What is the category Op for this space? (You may have already figured this out

in Exercise 7.31; if not, do so now.)

2. What does a presheaf on Op consist of?

3. What is the sheaf condition for Op?
4. How do we identify a sheaf on Op with a function? ♦

7.4 Toposes

A topos is defined to be a category of sheaves.9 So for any topological space (X,Op),
the category Shv(X,Op) defined in Definition 7.35 is a topos. In particular, taking the

one-point space X � 1with its unique topology, we find that the category Set is a topos,
as we’ve been saying all along and saw again explicitly in Example 7.48. And for any

9
This is sometimes called a sheaf topos or a Grothendieck topos. There is a more general sort of topos

called an elementary topos due to Lawvere.
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database schema—i.e. finitely presented category—C, the category C-Inst of database
instances on C is also a topos.10 Toposes encompass both of these sources of examples,

and many more.

Toposes are incredibly nice structures, for a variety of seemingly disparate reasons.

In this sketch, the reason in focus is that every topos has many of the same structural

properties that the category Set has. Indeed, we discussed in Section 7.2.1 that every

topos has limits and colimits, is cartesian closed, has epi-mono factorizations, and has

a subobject classifier (see Section 7.2.2). Using these properties, one can do logic with

semantics in the topos E. We explained this for sets, but now imagine it for sheaves on a

topological space. There, the same logical symbols ∧,∨,¬,⇒, ∃, ∀ become operations

that mean something about sub-sheaves—e.g. vector fields, sections of continuous

functions, etc.—not just subsets.

Tounderstand thismoredeeply,we should saywhat the subobject classifiertrue : 1→
Ω is in more generality. We said that, in the topos Set, the subobject classifier is the set
of booleans Ω � B. In a sheaf topos E � Shv(X,Op), the object Ω ∈ E is a sheaf, not

just a set. What sheaf is it?

7.4.1 The subobject classifier Ω in a sheaf topos

In this subsection we aim to understand the subobject classifier Ω, i.e. the object of

truth values, in the sheaf topos Shv(X,Op). Since Ω is a sheaf, let’s understand it

by going through the definition of sheaf (Definition 7.35) slowly in this case. A sheaf

Ω is a presheaf that satisfies the sheaf condition. As a presheaf it is just a functor

Ω : Opop → Set; it assigns a setΩ(U) to each open U ⊆ X and comes with a restriction

mapΩ(U) → Ω(V)whenever V ⊆ U. So in our quest to understandΩ, we first ask the

question: what presheaf is it?

The answer to our question is that Ω is the presheaf that assigns to U ∈ Op the set

of open subsets of U:

Ω(U) B {U′ ∈ Op | U′ ⊆ U}. (7.50)

That was easy, right? And given the restriction map for V ⊆ U is given by

Ω(U) → Ω(V) (7.51)

U′ 7→ U′ ∩ V.

One can check that this is functorial—see Exercise 7.53—and after doing so wewill still

need to see that it satisfies the sheaf condition. But at least we don’t have to struggle to

understand Ω: it’s a lot like Op itself.

10
We said that a topos is a category of sheaves, yet database instances are presheaves; so how is C-Inst

a topos? Well, presheaves in fact count as sheaves. We apologize that this couldn’t be clearer. All of this

could be made formal if we were to introduce sites. Unfortunately, that concept is simply too abstract for

the scope of this chapter.



244 CHAPTER 7. LOGIC OF BEHAVIOR: SHEAVES, TOPOSES, LANGUAGES

Exercise 7.52. Let X � {1} be the one point space. We said above that its subobject

classifier is the setB of booleans, but how does that align with the definition ofΩ given

in Eq. (7.50)? ♦

Exercise 7.53.
1. Show that the definition ofΩ given above in Eqs. (7.50) and (7.51) is functorial, i.e.,

that whenever W ⊆ V ⊆ U, the restriction map Ω(U) → Ω(V) followed by the

restriction mapΩ(V) → Ω(W) is the same as the restriction mapΩ(U) → Ω(W).
2. Is that all that’s necessary to conclude that Ω is a presheaf? ♦

To see thatΩ as defined inEq. (7.50) satisfies the sheaf condition (seeDefinition 7.35),

suppose that we have a cover U �
⋃

i∈I Ui , and suppose given an element Vi ∈ Ω(Ui),
i.e. an open set Vi ⊆ Ui , for each i ∈ I. Suppose further that for all i , j ∈ I, it is the

case that Vi ∩ U j � Vj ∩ Ui , i.e. that the elements form a matching family. Define

V B
⋃

i∈I Vi ; it is an open subset of U, so we can consider V as an element of Ω(U).
The following verifies that V is indeed a gluing for the (Vi)i∈I :

V ∩U j �

(⋃
i∈I

Vi

)
∩U j �

⋃
i∈I

(Vi ∩U j) �
⋃
i∈I

(Vj ∩Ui) �
(⋃

i∈I

Ui

)
∩ Vj � Vj

In other words V ∩U j � Vj for any j ∈ I. So our Ω has been upgraded from presheaf

to sheaf!

The eagle-eyed reader will have noticed that we haven’t yet given all the data

needed to define a subobject classifier. To turn the object Ω into a subobject classifier

in good standing, we also need to give a sheaf morphism true : {1} → Ω. Here

{1} : Opop → Set is the terminal sheaf; it maps every open set to the terminal, one

element set {1}. The correct morphism true : {1} → Ω for the subobject classifier is

the sheaf morphism that assigns, for every U ∈ Op the function {1} � {1}(U) → Ω(U)
sending 1 7→ U, the largest open set U ⊆ U. From now on we denote {1} simply as 1.

Upshot: Truth values are open sets. The point is that the truth values in the topos

of sheaves on a space (X,Op) are the open sets of that space. When someone says “is

property P true?,” the answer is not yes or no, but “it is true on the open subset U.”

If this U is everything, U � X, then P is really true; if U is nothing, U � �, then P is

really false. But in general, it’s just true some places and not others.

Example 7.54. The category Grph of graphs is a presheaf topos, and one can also think

of it as the category of instances for a database schema, as we saw in Example 7.23. The

subobject classifierΩ in the topos Gr is thus a graph, so we can draw it. Here’s what it
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looks like:

ΩGrph � 0 V(0,0; 0)
(0,V ; 0)

(V,V ; 0)

(V,V ; A)
(V,0; 0)

Finding Ω for oneself is easiest using something called the Yoneda Lemma, but we

have not introduced it. For a nice, easy introduction to the topos of graphs, see [Vig03].

The terminal graph is a single vertex with a single loop, and the graph homomorphism

true : 1→ Ω sends that loop to (V,V ; A).
Given any graph G and subgraph i : H ⊆ G, we need to construct a graph homo-

morphism pHq : G → Ω classifying H. The idea is that for each part of G, we decide

“how much of it is in H. A vertex in v in G is either in H or not; if so we send it to V
and if not we send it to 0. But arrows a are more complicated. If a is in H, we send

it (V,V ; A). But if it is not in H, the mathematics requires us to ask more questions:

is its source in H? is its target in G”? both? neither? Based on the answers to these

questions we send a to (V, 0; 0), (0,V ; 0), (V,V ; 0), or (0, 0; 0), respectively.

Exercise 7.55. Consider the subgraph H ⊆ G shown here:

A• B• C• ⊆ A• B• C• D•
f

1

h i

Find the graph homomorphism pHq : G→ Ω classifying it. See Example 7.54. ♦

7.4.2 Logic in a sheaf topos

Let’s consider the logical connectives, AND, OR, IMPLIES, and NOT. Suppose we

have a topological space X ∈ Op. Given two open sets U,V , considered as truth

values U,V ∈ Ω(X), then their conjunction ‘U AND V’ is their intersection, and their

disjunction ‘U OR V’ is their union;

(U ∧ V) B U ∩ V and (U ∨ V) B U ∪ V. (7.56)

These formulas are easy to remember, because ∧ looks like ∩ and ∨ looks like ∪. The
implication U ⇒ V is the largest open set R such that R ∩U ⊆ V , i.e.

(U ⇒ V) B
⋃

{R∈Op|R∩U⊆V}
R. (7.57)

In general, it is not easy to reduce Eq. (7.57) further, so implication is the hardest logical

connective to think about topologically.

Finally, the negation of U is given by ¬U B (U ⇒ false), and this turns out

to be relatively simple. By the formula in Eq. (7.57), it is the union of all R such that

R∩U � �, i.e. the union of all open sets in the complement of U. If you know topology,

you might recognize that ¬U is the ‘interior of the complement of U.’
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Example 7.58. Consider the real line X � R as a topological space (see Exercise 7.27).

Let U,V ∈ Ω(X) be the open sets U � {x ∈ R | x < 3} and V � {x ∈ R | −4 < x < 4}.
Using interval notation, U � (−∞, 3) and V � (−4, 4). Then

• U ∧ V � (−4, 3).
• U ∨ V � (−∞, 4).
• ¬U � (3,∞).
• ¬V � (−∞,−4) ∪ (4,∞).
• (U ⇒ V) � (−4,∞)
• (V ⇒ U) � U

Exercise 7.59. Consider the real line R as a topological space, and consider the open

subset U � R − {0}.
1. What open subset is ¬U?

2. What open subset is ¬¬U?

3. Is it true that U ⊆ ¬¬U?

4. Is it true that ¬¬U ⊆ U? ♦

Above we explained operations on open sets, one corresponding to each logical

connective; there are also open sets corresponding to the the symbols true and false.

We explore this in an exercise.

Exercise 7.60. Let (X,Op) be a topological space.
1. Suppose the symbol true corresponds to an open set such that for any open set

U ∈ Op, we have (true ∧U) � U. Which open set is it?

2. Other things we should expect from true include (true ∨ U) � true and (U ⇒
true) � true and (true⇒ U) � U. Do these hold for your answer to 1?

3. The symbol false corresponds to an open set U ∈ Op such that for any open set

U ∈ Op, we have (false ∨U) � U. Which open set is it?

4. Other things we should expect from false include (false ∧ U) � false and

(false⇒ U) � true. Do these hold for your answer to 1? ♦

Example 7.61. For a vector bundle π : E → X over a space X, the corresponding sheaf

is Secπ corresponding to its sections: to each open set iU : U ⊆ X, we associate the set

of functions s : U → E for which s # π � iU . For example, in the case of the tangent

bundle π : TM → M (see Example 7.46), the corresponding sheaf, call it VF, associates

to each U the set VF(U) of vector fields on U.

The internal logic of the topos can then be used to consider properties of vector

fields. For example, one could have a predicate Grad : VF→ Ω that asks for the largest

subspace Grad(v) on which a given vector field v comes from the gradient of some

scalar function. One could also have a predicate that asks for the largest open set on

which a vector field is non-zero. Logical operations like ∧ and ∨ could then be applied

to hone in on precise submanifolds throughout which various desired properties hold,
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and to reason logically about what other properties are forced to hold there.

7.4.3 Predicates

In English, a predicate is the part of the sentence that comes after the subject. For

example “. . . is even” or “. . . likes the weather” are predicates. Not every subject

makes sense for a given predicate; e.g. the sentence “7 is even” may be false, but it

makes sense. In contrast, the sentence “2.7 is even” does not really make sense, and

“2.7 likes the weather” certainly doesn’t. In computer science, they might say “The

expression ‘2.7 likes the weather’ does not type check.”

The point is that each predicate is associated to a type, namely the type of subject

that makes sense for that predicate. When we apply a predicate to a subject of the

appropriate type, the result has a truth value: “7 is even” is either true or false.

Perhaps “Bob likes the weather” is true some days and false on others. In fact, this

truth value might change by the year (bad weather this year), by the season, by the

hour, etc. In English, we expect truth values of sentences to change over time, which

is exactly the motivation for this chapter. We’re working toward a logic where truth

values change over time.

In a topos E � Shv(X,Op), a predicate is a sheafmorphism p : S→ Ωwhere S ∈ E is

a sheaf andΩ ∈ E is the subobject classifier, the sheaf of truth values. ByDefinition 7.35

we get a function p(U) : S(U) → Ω(U) for any open set U ⊆ X. In the above example—

which we will discuss more carefully in Section 7.5—if S is the sheaf of people (people

come and go over time), and Bob ∈ S(U) is a person existing over a time U, and p is the

predicate “likes the weather,” then p(Bob) is the set of times during which Bob likes

the weather. So the answer to “Bob likes the weather” is something like “in summers

yes, and also in April 2018 and May 2019 yes, but in all other times no.” That’s p(Bob),
the temporal truth value obtained by applying the predicate p to the subject Bob.

Exercise 7.62. Just now we described how a predicate p : S→ Ω, such as “. . . likes the

weather,” acts on sections s ∈ S(U), say s � Bob. But by Definition 7.12, any predicate

p : S→ Ω also defines a subobject of {S | p} ⊆ S. Describe the sections of this subsheaf.

♦

The poset of subobjects. For a topos E � Shv(X,Op) and object (sheaf) S ∈ E, the

set of S-predicates |ΩE | � E(S,Ω) is naturally given the structure of a poset, which we

denote

(|ΩS |, ≤S) (7.63)

Given two predicates p , q : S → Ω, we say that p ≤S q if the first implies the second.

More precisely, for any U ∈ Op and section s ∈ S(U) we obtain two open subsets

p(s) ⊆ U and q(s) ⊆ U. We say that p ≤S q if p(s) ⊆ q(s) for all U ∈ Op and s ∈ S(U).
We often drop the superscript from ≤S

and simply write ≤. In formal logic notation,
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one might write p ≤S q using the ` symbol, e.g. in one of the following ways:

s : S | p(s) ` q(s) or p(s) `s:S q(s).

In particular, if S � 1 is the terminal object, we denote |ΩS | by |Ω|, and refer to elements

p ∈ |Ω| as propositions. They are just morphisms p : 1→ Ω.

This preorder is partially ordered—a poset—meaning that if p ≤ q and q ≤ p then

p � q. The reason is that for any subsets U,V ⊆ X, if U ⊆ V and V ⊆ U then U � V .

Exercise 7.64. Give an example of a space X, a sheaf S ∈ Shv(X), and two predicates

p , q : S→ Ω for which p(s) `s:S q(s) holds. You do not have to be formal. ♦

All of the logical symbols (true, false,∧,∨,⇒,¬) from Section 7.4.2 make sense

in any such poset |ΩS |. For any two predicates p , q : S→ Ω, we define (p ∧ q) : S→ Ω

by (p ∧ q)(s) B p(s) ∧ q(s), and similarly for ∨. Thus one says that these operations

are computed pointwise on S. With these definitions, the ∧ symbol is the meet and the ∨
symbol is the join—in the sense of Definition 1.81—for the poset |ΩS |.

With all of the logical structurewe’ve defined so far, the poset |ΩS | of predicates on S
formswhat’s called aHeyting algebra. Wewill not define it here, but more information

can be found in Section 7.6. We now move on to quantification.

7.4.4 Quantification

Quantification comes in two flavors: universal and existential, or ‘for all’ and ‘there

exists.’ Each takes in a predicate of n+1 variables and returns a predicate of n variables.

Example 7.65. Suppose we have two sheaves S, T ∈ Shv(X,Op) and a predicate p : S ×
T → Ω. Let’s say T represents what’s considered newsworthy and S is again the set

of people. So for a subset of time U, a section t ∈ T(U) is something that’s considered

newsworthy throughout the whole of U, and a section s ∈ S(U) is a person that lasts

throughout the whole of U. Let’s imagine the predicate p as “s is worried about t.”
Now recall from Section 7.4.3 that a predicate p does not simply return true or false;

given a person s and a news-item t, it returns a truth value corresponding to the subset

of times on which p(s , t) is true.
“For all t in T, . . . is worried about t” is itself a predicate on just one variable, S,

which we denote

∀(t : T). p(s , t).

Applying this predicate to a person s returns the times when that person is worried

about everything in the news. Similarly, “there exists t in T such that s is worried about

t” is also a predicate on S, which we denote ∃(t : T). p(s , t). If we apply this predicate

to a person s, we get the times when person s is worried about at least one thing in the

news.
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Exercise 7.66. In the topos Set, where Ω � B, consider the predicate p : N × Z → B

given by

p(n , z) �
{
true if n ≤ |z |
false if n > |z |.

1. What is the set of n ∈ N for which the predicate ∀(z : Z). p(n , z) holds?
2. What is the set of n ∈ N for which the predicate ∃(z : Z). p(n , z) holds?
3. What is the set of z ∈ Z for which the predicate ∀(n : N). p(n , z) holds?
4. What is the set of z ∈ Z for which the predicate ∃(n : N). p(n , z) holds? ♦

So given p, we have a universally- and an existentially-quantified predicate ∀(t :

T). p(s , t) and ∃(t : T). p(s , t) on S. How do we formally understand them as sheaf

morphisms S→ Ω or, equivalently, as subsheaves of S?

Universal quantification. Given a predicate p : S×T → Ω, the universally-quantified

predicate ∀(t : T). p(s , t) takes a section s ∈ S(U), for any open set U, and returns a

certain open set V ∈ Ω(U). Namely, it returns the largest open set V ⊆ U for which

p(s
��
V , t) � V holds for all t ∈ T(V).

Exercise 7.67. Suppose s is a person alive throughout the interval U. Apply the

above definition to the example p(s , t) � “person s is worried about news t” from

Example 7.65. Here, T(V) is the set of items that are in the news throughout the

interval V .

1. What open subset of U is ∀(t : T). p(s , t) for a person s?
2. Does it have the semanticmeaning you’d expect, given the less formal description

in Section 7.4.4? ♦

Abstractly speaking, the universally-quantified predicate corresponds to the sub-

sheaf given by the following pullback:

∀t p 1

S ΩT

trueT

p′

y

where p′ : S → ΩT
is the currying of S × T → Ω and trueT

is the currying of the

composite 1 × T
!−→ 1

true−−−→ Ω. See Eq. (7.10).

Existential quantification. Given a predicate p : S × T → Ω, the existentially quanti-

fied predicate ∃(t : T). p(s , t) takes a section s ∈ S(U), for any open set U, and returns

a certain open set V ∈ Ω(U), namely the union V �
⋃

i Vi of all the open sets Vi for

which there exists some ti ∈ T(Vi) satisfying p(s
��
Vi
, ti) � Vi . If the result is U itself, you

might be tempted to think “ah, so there exists some t ∈ T(U) satisfying p(t),” but that

is not necessarily so. There is just a cover of U �
⋃

Ui and local sections ti ∈ T(Ui),
each satisfying p, as explained above. Thus the existential quantifier is doing a lot of
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work “under the hood,” taking coverings into account without displaying that fact in

the notation.

Exercise 7.68. Apply the above definition to the “person s is worried about news t”
predicate from Example 7.65.

1. What open set is ∃(t : T). p(s , t) for a person s?
2. Does it have the semantic meaning you’d expect? ♦

Abstractly speaking, the existentially-quantified predicate is given as follows. Start

with the subobject classified by p, namely {(s , t) ∈ S × T | p(s , t)} ⊆ S × T, compose

with the projection πS : S × T → S as on the upper right; then take the epi-mono

factorization of the composite as on the lower left:

{S × T | p} S × T

∃t p S

πS

Then the bottom map is the desired subsheaf of S.

7.4.5 Modalities

Back in Example 1.123 we discussed modal operators—also known as modalities—

saying they are closure operators on preorders which arise in logic. The preorders we

were referring to are the ones discussed in Eq. (7.63): for any object S ∈ E there is the

poset (|ΩS |, ≤S) of predicates on S, where |ΩS | � E(S,Ω) is just the set of morphisms

S→ Ω in the category E.

Definition 7.69. A modality in Shv(X) is a sheaf morphism j : Ω→ Ω satisfying three

properties for all U ⊆ X and p , q ∈ Ω(U):
(a) p ≤ j(p);
(b) ( j # j)(p) ≤ j(p); and
(c) j(p ∧ q) � j(p) ∧ j(q).

Exercise 7.70. Suppose j : Ω → Ω is a morphism of sheaves on X, such that p ≤ j(p)
holds for all U ⊆ X and p ∈ Ω(U). Show that for all q ∈ Ω(U)we have j( j(q)) ≤ j(q) iff
j( j(q)) � j(q). ♦

In Example 1.123 we informally said that for any proposition p, e.g. “Bob is in San

Diego,” there is a modal operator “assuming p, ....” Now we are in a position to make

that formal.

Proposition 7.71. Fix a proposition p ∈ |Ω|. Then
(a) the sheaf morphism Ω→ Ω given by sending q to p ⇒ q is a modality.

(b) the sheaf morphism Ω→ Ω given by sending q to p ∨ q is a modality.

(c) the sheaf morphism Ω→ Ω given by sending q to (q ⇒ p) ⇒ p is a modality.



7.4. TOPOSES 251

We cannot prove Proposition 7.71 here, but we give references in Section 7.6.

Exercise 7.72. Let S be the sheaf of people as in Section 7.4.3, and let j : Ω → Ω be

“assuming Bob is in San Diego...”

1. Name any predicate p : S→ Ω, such as “likes the weather.”

2. Choose a time interval U. For an arbitrary person s ∈ S(U), what sort of thing is

p(s), and what does it mean?

3. What sort of thing is j(p(s)) and what does it mean?

4. Is it true that p(s) ≤ j(p(s))? Explain briefly.

5. Is it true that j( j(p(s))) � j(p(s))? Explain briefly.

6. Choose another predicate q : S→ Ω. Is it true that j(p ∧ q) � j(p) ∧ j(q)? Explain

briefly. ♦

7.4.6 Type theories and semantics

Wehave been talking about the logic of a topos in terms of open sets, but this is actually

a conflation of two ideas that are really better left unconflated. The first is logic, or

formal language, and the second is semantics, or meaning. The formal language looks

like this:

∀(t : T).∃(s : S). f (s) � t (7.73)

and semantic statements are like “the sheaf morphism f : S→ T is an epimorphism.”

In the former, logical world, all statements are linguistic expressions formed according

to strict rules and all proofs are deductions that also follow strict rules. In the latter,

semantic world, statements and proofs are about the sheaves themselves, as mathe-

matical objects. We admit these are rough statements; again, our aim here is only to

give a taste, an invitation to further reading.

To provide semantics for a logical system means to provide a compiler that converts

each logical statement in the formal language into a mathematical statement about

particular sheaves and their relationships. A computer can carry out logical deductions

without knowing what any of them “mean” about sheaves. We say that semantics is

sound if every formal proof is converted into a true fact about the relevant sheaves.

Every topos can be assigned a formal language, often called its internal language,
in which to carry out constructions and formal proofs. This language has a sound

semantics—a sort of logic-to-sheaf compiler—which goes under the name categorical
semantics or Kripke-Joyal semantics. We gave the basic ideas in Section 7.4; we give

references to the literature in Section 7.6.

Example 7.74. In every topos E, and for every f : S → T in E, the morphism f is

an epimorphism if and only if Eq. (7.73) holds. For example, consider the case of

database instances on a schema C, say with 100 tables (one of which might be denoted

c ∈ Ob(C)) and 500 foreign key columns (one of which might be denoted f : c → c′ in
C); see Eq. (3.2).
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If S and T are two instances and f is a natural transformation between them, then

we can ask the question of whether or not Eq. (7.73) holds. This simple formula is

compiled by the Kripke-Joyal semantics into asking:

Is it true that for every table c ∈ Ob(C) and every row s ∈ S(c) there exists

a row t ∈ T(c) such that f (s) � t?

This is exactly what it means for f to be surjective. Maybe this is not too impressive,

but whether one is talking about databases or topological spaces, or complex ideas

from algebraic geometry, Eq. (7.73) always compiles into the question of surjectivity.

For topological spaces it would say something like:

Is it true that for every open set U ⊆ X and every section s ∈ S(U) of the
bundle S, there exists an open covering of (Ui ⊆ U)i∈I of U and a section

ti ∈ T(Ui) of the bundle T for each i ∈ I, such that f (ti) � s
��
Ui

is the

restriction of s to Ui?

7.5 A topos of behavior types

Now thatwehavediscussed logic in a sheaf topos, we return to ourmotivating example,

a topos of behavior types. We begin by discussing the topological space on which

behavior types will be sheaves, a space called the interval domain.

Remark 7.75. Note that above, we were thinking very intuitively about time, e.g. when

we discussed people being worried about the news. Now we will be thinking about

time in a different way, but there is no need to change your answers or reconsider the

intuitive thinking done above.

7.5.1 The interval domain

The interval domain IR is a specific topological space, which we will use to model

intervals of time. In other words, we will be interested in the category Shv(IR) of
sheaves on the interval domain.

To give a topological space, one must give a pair (X,Op), where X is a set of ‘points’

and Op is a topology on X; see Definition 7.25. The set of points for IR is that of all

finite closed intervals

IR B {[d , u] ⊆ R | d ≤ u}.

For a < b in R, let o[a ,b] denote the set o[a ,b] B {[d , u] ∈ IR | a < d ≤ u < b}; these are
called basic open sets. The topology Op is determined by these basic open sets in that a

subset U is open if it is the union of some collection of basic open sets.

Thus for example, o[0,5] is an open set: it contains every [d , u] contained in the

open interval {x ∈ R | 0 < x < 5}. Similarly o[4,8] is an open set, but note that

o[0,5] ∪ o[4,8] , o[0,8]. Indeed, the interval [2, 6] is in the right-hand side but not the left.

Exercise 7.76.
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1. Explain why [2, 6] ∈ o[0,8].
2. Explain why [2, 6] < o[0,5] ∪ o[4,8]. ♦

Let Op denote the open sets of IR, as described above, and let BT B Shv(IR,Op)
denote the topos of sheaves on this space. We call it the topos of behavior types.

There is an important subspace of IR, namely the usual space of real numbers R.

We see R as a subspace of IR via the isomorphism

R � {[d , u] ∈ IR | d � u}.

We discussed the usual topology on R in Example 7.26, but we also get a topology

on R because it is a subset of IR; i.e. we have the subspace topology as described in

Exercise 7.32. These agree, as the reader can check.

Exercise 7.77. Show that a subset U ⊆ R is open in the subspace topology of R ⊆ IR iff

U ∩ R is open in the usual topology on R defined in Example 7.26. ♦

7.5.2 Sheaves on IR

We cannot go into much depth about the sheaf topos BT � Shv(IR,Op), for reasons
of space; we refer the interested reader to Section 7.6. In this section we will briefly

discuss what it means to be a sheaf on IR, giving a few examples including that of the

subobject classifier.

What is a sheaf on IR? A sheaf S on the interval domain (IR,Op) is a functor

S : Opop → Set: it assigns to each open set U a set S(U); how should we interpret this?

An element s ∈ S(U) is something that says is an “event that takes place throughout

the interval U.” Given this U-event s together with an open subset of V ⊆ U, there is

a V-event s
��
V that tells us what s is if we regard it as an event taking place throughout

V . If U �
⋃

i∈I Ui and we can find matching Ui-events (si) for each i ∈ I, then the sheaf

condition (Definition 7.35) says that they have a unique gluing, i.e. a U-event s ∈ S(U)
that encompasses all of them: s

��
Ui

� si for each i ∈ I.
We said in Section 7.5.1 that every open set U ⊆ IR can be written as the union of

basic open sets o[a ,b]. This implies that any sheaf S is determined by its values S(o[a ,b])
on these basic open sets. The sheaf condition furthermore implies that these vary

continuously in a certain sense, which we can express formally as

S(o[a ,b]) � lim

ε>0

S(o[a−ε,b+ε]).

However, rather than get into the details, we describe a few sorts of sheaves that may

be of interest.

Example 7.78. For any set A there is a sheaf A ∈ Shv(IR) that assigns to each open set U
the set A(U) B A. This allows us to refer to integers, or real numbers, or letters of an

alphabet, as though they were behaviors. What sort of behavior is 7 ∈ N? It is the sort
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of behavior that never changes: it’s always seven. Thus A is called the constant sheaf on
A.

Example 7.79. Fix any topological space (X,OpX). Then there is a sheaf FX of local
functions from IR to X. That is, for any open set U ∈ OpIR, we assign the set FX(U) B
{ f : U → X | f is continuous}. There is also the sheaf GX of local functions on the

subspace R ⊆ IR. That is, for any open set U ∈ OpIR, we assign the set GX(U) B
{ f : U ∩ R→ X | f is continuous}.

Exercise 7.80. Let’s check that Example 7.78 makes sense. Fix any topological space

(X,OpX) and any subset R ⊆ IR of the interval domain. Define HX(U) B { f : U∩R→
X | f is continuous}.

1. Is HX a presheaf? If not, why not; if so, what are the restriction maps?

2. Is HX a sheaf? Why or why not? ♦

Example 7.81. Another source of examples comes from the world of open hybrid dy-

namical systems. These are machines whose behavior is a mixture of continuous

movements—generally imagined as trajectories through a vector field—and discrete

jumps. These jumps are imagined as being caused by signals that spontaneously arrive.

Over any interval of time, a hybrid system has certain things that it can do and certain

things that it cannot. Although we will not make this precise here, there is a construc-

tion for converting any hybrid system into a sheaf on IR; we will give references in

Section 7.6.

We refer to sheaves on IR as behavior types because almost any sort of behavior one

can imagine is a behavior type. Of course, a complex behavior type—such as the way

someone acts when they are in love—would be extremely hard to write down. But the

idea is straightforward: for any interval of time, say a three-day interval (d , d + 3), let
L(d , d+3) denote the set of all possible behaviors a personwho is in love could possibly

do. Obviously it’s a big, unwieldy set, and no one would want to make precise. But to

the extent that one can imagine that sort of behavior as occurring through time, they

could imagine the corresponding sheaf.

The subobject classifier as a sheaf on IR. In any sheaf topos, the subobject classifier

Ω is itself a sheaf. It is responsible for the truth values in the topos. As we said in

Section 7.4.1, when it comes to sheaves on a topological space (X,Op), truth values are

open subsets U ∈ Op.
BT is the topos of sheaves on the space (IR,Op), as defined in Section 7.5.1. As

always, the subobject classifierΩ assigns to any U ∈ Op the set of open subsets of U, so

these are the truth values. But what do they mean? The idea is that every proposition,
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such as “Bob likes the weather” returns an open set U, as if to respond that Bob likes

the weather “...throughout time period U.” Let’s explore this just a bit more.

Suppose Bob likes the weather throughout the interval (0, 5) and throughout the

interval (4, 8). We would probably conclude that Bob likes the weather throughout the

interval (0, 8). But what about the more ominous statement “a single pair of eyes has

remained watching position p.” Then just because it’s true on (0, 5) and on (4, 8), does
not imply that it’s been true on (0, 8): there may have been a change of shift, where

one watcher was relieved from their post by another watcher. As another example,

consider the statement “the stock market did not go down by more than 10 points.”

This might be true on (0, 5) and true on (4, 8) but not on (0, 8). In order to capture the

semantics of statements like these—statements that take time to evaluate—we must

use the space IR rather than the space R.

7.5.3 Safety proofs in temporal logic

Wenowhave at least a basic idea ofwhat goes into a proof of safety, say for autonomous

vehicles, or airplanes in the national airspace system. In fact, the underlying ideas of

this chapter came out of a project between MIT, Honeywell Inc., and NASA [SSV18].

The background for the project was that the National Airspace System consists of

many different systems interacting: interactions between airplanes, each of which is

an interaction between physics, humans, sensors, and actuators, each of which is an

interaction between still more basic parts. The same sort of story would hold for a fleet

of autonomous vehicles, as in the introduction to this chapter.

Suppose that each of the systems—at any level—is guaranteed to satisfy some

property. For example, perhaps we can assume that an engine is either out of gas, has

a broken fuel line, or is following the orders of a human driver or pilot. If there is

a rupture in the fuel line, the sensors will alert the human within three seconds, etc.

Each of the components interact with a number of different variables. In the case of

airplanes, a pilot interacts with the radio, the positions of the dials, the position of

the thruster, and the visual data in front of her. The component—here the pilot—is

guaranteed to keep these variables in some relation: “if I see something, I will say

something” or “if the dials are in position bad_pos, I will engage the thruster within 1

second.” We call these guarantees behavior contracts.
All of the above can be captured in the topos BT of behavior types. The variables

are behavior types: the altimeter is a variable whose value θ ∈ R≥0 is changing

continuouslywith respect to time. The thruster is also a continuously-changingvariable

whose value is in the range [0, 1], etc.
The guaranteed relationships—behavior contracts—are given by predicates on vari-

ables. For example, if the pilot will always engage the thruster within one second

of the display dials being in position bad_pos, this can be captured by a predicate

p : dials × thrusters → Ω. While we have not written out a formal language for p,
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one could imagine the predicate p(D , T) for D : dials and T : thrusters as

∀(t : R).@t
(
bad_pos(D)

)
⇒

∃(r : R). (0 < r < 1) ∧ ∀(r′ : R). 0 ≤ r′ ≤ 5⇒ @t+r+r′
(
engaged(T)

)
. (7.82)

Here @t is a modality, as we discussed in Definition 7.69; in fact it turns out to be one

of type 3. from Proposition 7.71, but we cannot go into that. For a proposition q, the
statement @t(q) says that q is true in some small enough neighborhood around t. So
(7.82) says “starting within one second of whenever the dials say that we are in a bad

position, I’ll engage the thrusters for five seconds.”

Given an actual playing-out-of-events over a time period U, i.e. actual section D ∈
dials(U) and section T ∈ thrusters(U), the predicate Eq. (7.82) will hold on certain

parts of U and not others, and this is the truth value of p. Hopefully the pilot upholds

her behavior contract at all times she is flying, inwhich case the truth valuewill be true

throughout that interval U. But if the pilot breaks her contract over certain intervals,

then this fact is recorded in Ω.

The logic allows us to record axioms like that shown in Eq. (7.82) and then reason

from them: e.g. if the pilot and the airplane, and at least one of the three radars upholds

its contract then safe separationwill bemaintained. We cannot give further details here,

but these matters have been worked out in detail in [SS18]; see Section 7.6.

7.6 Summary and further reading

This chapter was about modeling various sorts of behavior using sheaves on a space of

time-intervals. Behavior may seem like it’s something that occurs now in the present,

but in fact our memory of past behavior informs what the current behavior means.

In order to commit to anything, to plan or complete any sort of process, one needs to

be able to reason over time-intervals. The nice thing about temporal sheaves—indeed

sheaves on any site—is that they fit into a categorical structure called a topos, which has

many useful formal properties. In particular, it comes equipped with a higher-order

logic with which we can formally reason about how temporal sheaves work together

when combined in larger systems. A much more detailed version of this story was

presented in [SS18]. But it would have been impossible without the extensive edifice

of topos theory and domain theory that has been developed over the past six decades.

Sheaf toposes were invented by Grothendieck and his school in the 1960s [AGV71]

as an approach to proving conjectures at the intersection of algebraic geometry and

number theory, called theWeil conjectures. Soonafter, Lawvere andTierney recognized

that toposes had all the structure necessary to do logic, and with a whole host of

other category theorists, the subject was developed to an impressive extent in many

directions. For a much more complete history, see [McL90].

There are many sorts of references on topos theory. One that starts by introducing

categories and then moves to toposes, focusing on logic, is [McL92]. Our favorite
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treatment is perhaps [MM92], where the geometric aspects play a central role. Finally,

Johnstone has done the field a huge favor by collecting large amounts of the theory

into a single two-volume set [Joh02]; it is very dense, but an essential reference for the

serious student or researcher. For just categorical (Kripke-Joyal) semantics of logic in a

topos, one should see either [MM92], [Jac99], or [LS88].

We did not mention domain theory much in this chapter, aside from referring to

the interval domain. But domains, in the sense of Dana Scott, play an important role

in the deeper aspects of temporal type theory. A good reference is [Gie+03], but for an

introduction we suggest [AJ94].

In some sense our application area has been a very general sort of dynamical system.

Other categorical approaches to this subject include [JNW96], [HTP03], [AS05], and

[Law86], though there are many others.

We hope you have enjoyed the seven sketches in this book. As a next step, consider

running a reading course on applied category theory with some friends or colleagues.

Simultaneously, we hope you begin to search out categorical ways of thinking about

familiar subjects. Perhaps you’ll find something youwant to contribute to this growing

field of applied category theory, or aswe sometimes call it, the field of compositionality.
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