
Chapter 4

Collaborative design:
Profunctors, categorification, and

monoidal categories

4.1 Can we build it?

When designing a large-scale system, many different fields of expertise are joined

to work on a single project. Thus the whole project team is divided into multiple

sub-teams, each of which is working on a sub-project. And we recurse downward:

the sub-project is again factored into sub-sub-projects, each with their own team. One

could refer to this sort of hierarchical design process as collaborative design, or co-design.
In this chapter, we discuss a mathematical theory of co-design, due to Andrea Censi

[Cen15].

Consider just one level of this hierarchy: a project and a set of teams working on

it. Each team is supposed to provide resources—sometimes called “functionalities”—to

the project, but the team also requires resources in order to do so. Different design

teams must be allowed to plan and work independently from one another in order for

progress to be made. Yet the design decisions made by one group affect the design

decisions others can make: if A wants more space in order to provide a better radio

speaker, then B must use less space. So these teams—though ostensibly working

independently—are dependent on each other after all.

The combination of dependence and independence is crucial for progress to be

made, and yet it can cause major problems. When a team requires more resources than

it originally expected to require, or if it cannot provide the resources that it originally

claimed it could provide, the usual response is for the team to issue a design-change

notice. But these affect neighboring teams: if team A now requiresmore than originally

claimed, team B may have to change their design, which can in turn affect team C. Thus

these design-change notices can ripple through the system through feedback loops and
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can cause whole projects to fail [S+15].

As an example, consider the design problem of creating a robot to carry some load

at some velocity. The top-level planner breaks the problem into three design teams:

chassis team, motor team, and battery team. Each of these teams could break up into

multiple parts and the process repeated, but let’s remain at the top level and consider

the resources produced and the resources required by each of our three teams.

The chassis in some sense provides all the functionality—it carries the load at the

velocity—but it requires some things in order to do so. It requires money to build,

of course, but more to the point it requires a source of torque and speed. These are

supplied by the motor, which in turn needs voltage and current from the battery. Both

the motor and the battery cost money, but more importantly they need to be carried

by the chassis: they become part of the load. A feedback loop is created: the chassis

must carry all the weight, even that of the parts that power the chassis. A heavier

battery might provide more energy to power the chassis, but is the extra power worth

the heavier load?

In the following picture, each part—chassis, motor, battery, and robot—is shown as

a box with ports on the left and right. The functionalities, or resources produced by

the part are shown as ports on the left of the box, and the resources required by the

part are shown as ports on its right.
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(4.1)

The boxesmarkedΣ correspond to summing inputs. These boxes are not to bedesigned,

but we will see later that they fit easily into the same conceptual framework. Note

also the ≤’s on each wire; they indicate that if box A requires a resource that box B
produces, then A’s requirement must be less-than-or-equal-to B’s production. The

chassis requires torque, and the motor must produce at least that much torque.

To formalize this a bit more, let’s call diagrams like the one above co-design diagrams.
Each of the wires in a co-design diagram represents a preorder of resources. For

example, in Eq. (4.1) every wire corresponds to a resource type—weights, velocities,

torques, speeds, costs, voltages, and currents—where resources of each type can be

ordered from less useful to more useful. In general, these preorders do not have to be

linear orders, though in the above cases each will likely correspond to a linear order:

$10 ≤ $20, 5W ≤ 6W, and so on.

Each of the boxes in a co-design diagram corresponds to what we call a feasibility
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relation. A feasibility relation matches resource production with requirements. For

every pair (p , r) ∈ P × R, where P is the preorder of resources to be produced and R
is the preorder of resources to be required, the box says “true” or “false”—feasible or

infeasible—for that pair. In other words, “yes I can provide p given r” or “no, I cannot
provide p given r.”

Feasibility relations hence define a function Φ : P × R → Bool. For a function

Φ : P × R → Bool to make sense as a feasibility relation, however, there are two

conditions:

(a) If Φ(p , r) � true and p′ ≤ p, then Φ(p′, r) � true.
(b) If Φ(p , r) � true and r ≤ r′ then Φ(p , r′) � true.

These conditions, which we will see again in Definition 4.2, say that if you can produce

p given resources r, you can (a) also produce less p′ ≤ p with the same resources r, and
(b) also produce p given more resources r′ ≥ r. We will see that these two conditions

are formalized by requiring Φ to be a monotone map Pop × R→ Bool.
A co-design problem, represented by a co-design diagram, asks us to find the com-

posite of some feasibility relations. It asks, for example, given these capabilities of the

chassis, motor, and battery teams, can we build a robot together? Indeed, a co-design

diagram factors a problem—for example, that of designing a robot—into intercon-

nected subproblems, as in Eq. (4.1). Once the feasibility relation is worked out for each

of the subproblems, i.e. the inner boxes in the diagram, the mathematics provides an

algorithm producing the feasibility relation of the whole outer box. This process can

be recursed downward, from the largest problem to tiny subproblems.

In this chapter, we will understand co-design problems in terms of enriched pro-

functors, in particular Bool-profunctors. A Bool-profunctor is like a bridge connecting
one preorder to another. We will show how the co-design framework gives rise to a

structure known as a compact closed category, and that any compact closed category

can interpret the sorts of wiring diagrams we see in Eq. (4.1).

4.2 Enriched profunctors

In this section we will understand how co-design problems form a category. Along the

way we will develop some abstract machinery that will allow us to replace preorder

design spaces with other enriched categories.

4.2.1 Feasibility relationships as Bool-profunctors

The theory of co-design is based on preorders: each resource—e.g. velocity, torque, or

$—is structured as a preorder. The order x ≤ y represents the availability of x given
y, i.e. that whenever you have y, you also have x. For example, in our preorder of

wattage, if 5W ≤ 10W, it means that whenever we are provided 10W, we implicitly also

have 5W. Above we referred to this as an order from less useful to more useful: if x is

always available given y, then x is less useful than y.
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Weknow fromSection 2.3.2 that a preorderX can be conceived of as aBool-category.
Given x , y ∈ X, we haveX(x , y) ∈ B; this value responds to the assertion “x is available

given y,” marking it either true or false.

Our goal is to see feasibility relations as Bool-profunctors, which are a special case

of something called enriched profunctors. Indeed, we hope that this chapter will give

you some intuition for profunctors, arising from the table

Bool-category preorder

Bool-functor monotone map

Bool-profunctor feasibility relation

Because enriched profunctors are a bit abstract, we first concretely discuss Bool-
profunctors as feasibility relations. Recall that if X � (X, ≤) is a preorder, then its

opposite Xop � (X, ≥) has x ≥ y iff y ≤ x.

Definition 4.2. Let X � (X, ≤X) and Y � (Y, ≤Y) be preorders. A feasibility relation for X

given Y is a monotone map

Φ : Xop × Y→ Bool. (4.3)

We denote this by Φ : X Y.

Given x ∈ X and y ∈ Y, if Φ(x , y) � truewe say x can be obtained given y.

As mentioned in the introduction, the requirement that Φ is monotone says that

if x′ ≤X x and y ≤Y y′ then Φ(x , y) ≤Bool Φ(x′, y′). In other words, if x can be

obtained given y, and if x′ is available given x, then x′ can be obtained given y. And if

furthermore y is available given y′, then x′ can also be obtained given y′.

Exercise 4.4. Suppose we have the preorders

category

preordermonoid

X B

nothing

this book

Y B

1. Draw the Hasse diagram for the preorder Xop × Y.
2. Write down a profunctorΛ : X Y and, readingΛ(x , y) � true as “my aunt can

explain an x given y,” give an interpretation of the fact that the preimage of true

forms an upper set in Xop × Y. ♦

To generalize the notion of feasibility relation, we must notice that the symmetric

monoidal preorder Bool has more structure than just that of a symmetric monoidal

preorder: as mentioned in Exercise 2.93, Bool is a quantale. That means it has all

joins ∨, and a closure operation, which we’ll write⇒ : B × B→ B. By definition, this

operation satisfies the property that for all b , c , d ∈ B one has

b ∧ c ≤ d iff b ≤ (c ⇒ d). (4.5)
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The operation⇒ is given by the following table:

c d c ⇒ d
true true true

true false false

false true true

false false true

(4.6)

Exercise 4.7. Show that⇒ as defined in Eq. (4.6) indeed satisfies Eq. (4.5). ♦

On an abstract level, it is the fact that Bool is a quantale which makes everything

in this chapter work; any other (unital commutative) quantale also defines a way to

interpret co-design diagrams. For example, we could use the quantale Cost, which

would describe not whether x is available given y but the cost of obtaining x given y;
see Example 2.37 and Definition 2.46.

4.2.2 V-profunctors

We are now ready to recast Eq. (4.3) in abstract terms. Recall the notions of enriched

product (Definition 2.74), enriched functor (Definition 2.69), and quantale (Defini-

tion 2.79).

Definition 4.8. Let V � (V, ≤, I , ⊗) be a (unital commutative) quantale,
1
and let X and

Y be V-categories. A V-profunctor from X to Y, denoted Φ : X Y, is a V-functor

Φ : Xop × Y→ V.

Note that a V-functor must have V-categories for domain and codomain, so here we

are considering V as enriched in itself; see Remark 2.89.

Exercise 4.9. Show that a V-profunctor (Definition 4.8) is the same as a function

Φ : Ob(X) × Ob(Y) → V such that for any x , x′ ∈ X and y , y′ ∈ Y the following

inequality holds in V:

X(x′, x) ⊗ Φ(x , y) ⊗ Y(y , y′) ≤ Φ(x′, y′). ♦

Exercise 4.10. Is it true that a Bool-profunctor, as in Definition 4.8, is exactly the same

as a feasibility relation, as in Definition 4.2, once you peel back all the jargon? Or is

there some subtle difference? ♦

We know that Definition 4.8 is quite abstract. But have no fear, we will take you

through it in pictures.

1
From here on, as in Chapter 2, whenever we speak of quantales we mean unital commutative

quantales.
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Example 4.11 (Bool-profunctors and their interpretation as bridges). Let’s discuss Defi-

nition 4.8 in the case V � Bool. One way to imagine a Bool-profunctor Φ : X Y is in

terms of building bridges between two cities. Recall that a preorder (a Bool-category)
can be drawn using a Hasse diagram. We’ll think of the preorder as a city, and each

vertex in it as some point of interest. An arrow A → B in the Hasse diagram means

that there exists a way to get from point A to point B in the city. So what’s a profunctor?

A profunctor is just a bunch of bridges connecting points in one city to points in

another. Let’s see a specific example. Here is a picture of a Bool-profunctorΦ : X Y:

N•

W• E•

•
S

X B

•
a

b• c•

d•

e•

�: Y

Both X and Y are preorders, e.g. with W ≤ N and b ≤ a. With bridges coming from

the profunctor in blue, one can now use both paths within the cities and the bridges to

get from points in city X to points in city Y. For example, since there is a path from N
to e and E to a, we have Φ(N, e) � true and Φ(E, a) � true. On the other hand, since

there is no path from W to d, we have Φ(W, d) � false.
In fact, one could put a box around this entire picture and see a new preorder with

W ≤ N ≤ c ≤ a, etc. This is called the collage of Φ; we’ll explore this in more detail

later; see Definition 4.42.

Exercise 4.12. We can express Φ as a matrix where the (m , n)th entry is the value of

Φ(m , n) ∈ B. Fill out the Bool-matrix:

Φ a b c d e
N ? ? ? ? true

E true ? ? ? ?

W ? ? ? false ?

S ? ? ? ? ?

♦

We’ll call this the feasibility matrix of Φ.

Example 4.13 (Cost-profunctors and their interpretation as bridges). Let’s now consider

Cost-profunctors. Again we can view these as bridges, but this time our bridges are
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labelled by their length. Recall from Definition 2.53 and Eq. (2.56) that Cost-categories
are Lawvere metric spaces, and can be depicted using weighted graphs. We’ll think of

such a weighted graph as a chart of distances between points in a city, and generate a

Cost-profunctor by building a few bridges between the cities.

Here is a depiction of a Cost-profunctor Φ : X Y:

•
A

•
B

•
C

•
D

3

3

4

2

5X B

x•

•
y

z•3 4

3

4

�: Y

11

9

(4.14)

The distance from a point x in city X to a point y in city Y is given by the shortest path

that runs from x through X, then across one of the bridges, and then through Y to the

destination y. So for example

Φ(B, x) � 11, Φ(A, z) � 20, Φ(C, y) � 17.

Exercise 4.15. Fill out the Cost-matrix:

Φ x y z
A ? ? 20

B 11 ? ?

C ? 17 ?

D ? ? ?

♦

Remark 4.16 (Computing profunctors via matrix multiplication). We can give an algo-

rithm for computing the above distance matrix using matrix multiplication. First, just

like in Eq. (2.59), we can begin with the labelled graphs in Eq. (4.14) and read off the

matrices of arrow labels for X, Y, and Φ:

MX A B C D
A 0 ∞ 3 ∞
B 2 0 ∞ 5

C ∞ 3 0 ∞
D ∞ ∞ 4 0

MΦ x y z
A ∞ ∞ ∞
B 11 ∞ ∞
C ∞ ∞ ∞
D ∞ 9 ∞

MY x y z
x 0 4 3

y 3 0 ∞
z ∞ 4 0

Recall from Section 2.5.3 that the matrix of distances dY for Cost-category X can be

obtained by taking the matrix power of MX with smallest entries, and similarly for Y.

The matrix of distances for the profunctor Φwill be equal to dX ∗MΦ ∗ dY . In fact, since

X has four elements and Y has three, we also know that Φ � M3

X ∗MΦ ∗M2

Y .

Exercise 4.17. Calculate M3

X ∗ MΦ ∗ M2

Y , remembering to do matrix multiplication

according to the (min,+)-formula for matrix multiplication in the quantale Cost; see
Eq. (2.101).
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Your answer should agree with what you got in Exercise 4.15; does it? ♦

4.2.3 Back to co-design diagrams

Each box in a co-design diagram has a left-hand and a right-hand side, which in turn

consist of a collection of ports, which in turn are labeled by preorders. For example,

consider the chassis box below:

Chassis

load

velocity

torque

speed

$

Its left side consists of two ports—one for load and one for velocity—and these are

the functionality that the chassis produces. Its right side consists of three ports—

one for torque, one for speed, and one for $—and these are the resources that the

chassis requires. Each of these resources is to be taken as a preorder. For example,

load might be the preorder ([0,∞], ≤), where an element x ∈ [0,∞] represents the

idea “I can handle any load up to x.,” while $ might be the two-element preorder

{up_to_$100, more_than_$100}, where the first element of this set is less than the

second.

We then multiply—i.e. we take the product preorder—of all preorders on the left,

and similarly for those on the right. The box then represents a feasibility relation

between the results. For example, the chassis box above represents a feasibility relation

Chassis :

(
load × velocity

) (
torque × speed × $

)
Let’s walk through this a bit more concretely. Consider the design problem of

filming a movie, where you must pit the tone and entertainment value against the cost.

A feasibility relation describing this situation details what tone and entertainment

value can be obtained at each cost; as such, it is described by a feasibility relation

Φ : (T × E) $. We represent this by the box

Φ
T
E

$

where T, E, and $ are the preorders drawn below:

mean-spirited

•

good-natured

•

T B

boring

•

funny

•

E B $500K•

$1M•

$100K•

$ B
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A possible feasibility relation is then described by the profunctor

(mean, funny)

•
(g/n, boring)

•

(mean, boring)

•

(g/n, funny)

•

T × E �

$100K•

$500K•

$1M•

� $

This says, for example, that a good-natured but boring movie costs $500K to produce

(of course, the producers would also be happy to get $1M).

To elaborate, each arrow in the above diagram is to be interpreted as saying, “I can

provide the source given the target”. For example, there are arrows witnessing each

of “I can provide $500K given $1M”, “I can provide a good-natured but boring movie

given $500K”, and “I can provide a mean and boring movie given a good-natured

but boring movie”. Moreover, this relationship is transitive, so the path from (mean,

boring) to $1M indicates also that “I can provide amean and boringmovie given $1M”.

Note the similarity and difference with the bridge interpretation of profunctors in

Example 4.11: the arrows still indicate the possibility of moving between source and

target, but in this co-design driven interpretation we understand them as indicating

that it is possible to get to the source from the target.

Exercise 4.18. In the above diagram, the node (g/n, funny) has no dashed blue arrow

emerging from it. Is this valid? If so, what does it mean? ♦

4.3 Categories of profunctors

There is a category Feas whose objects are preorders and whose morphisms are feasi-

bility relations. In order to describe it, we must give the composition formula and the

identities, and prove that they satisfy the properties of being a category: unitality and

associativity.

4.3.1 Composing profunctors

If feasibility relations are to be morphisms, we need to give a formula for composing

two of them in series. Imagine you have cities P, Q, and R and you have bridges—and
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hence feasibility matrices—connecting these cities, say Φ : P Q andΨ : Q R.

N•

W• E•

•
S

P

•
a

b• c•

d•

e•

Q

x•

•
y

R

(4.19)

The feasibility matrices for Φ (in blue) andΨ (in red) are:

Φ a b c d e
N true false true false false

E true false true false true

W true true true true false

S true true true true true

Ψ x y
a false true

b true true

c false true

d true true

e false false

As in Remark 2.95, we personify a quantale as a navigator. So imagine a navigator is

trying to give a feasibility matrix Φ #Ψ for getting from P to R. How should this be

done? Basically, for every pair p ∈ P and r ∈ R, the navigator searches through Q for a

way-point q, somewhere both to which we can get from p AND fromwhich we can get

to r. It is true that we can navigate from p to r iff there is a way-point q through which

to travel; this is a big OR over all possible q. The composition formula is thus:

(Φ #Ψ)(p , r) B
∨
q∈Q

Φ(p , q) ∧Ψ(q , r). (4.20)

But as we said in Eq. (2.101), this can be thought of as matrix multiplication. In our

example, the result is

Φ #Ψ x y
N false true

E false true

W true true

S true true

and one can check that this answers the question, “can you get from here to there” in

Eq. (4.19): you can’t get from N to x but you can get from N to y.
The formula (4.20) is written in terms of the quantale Bool, but it works for arbitrary

(unital commutative) quantales. We give the following definition.
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Definition 4.21. Let V be a quantale, let X, Y, and Z be V-categories, and let Φ : X Y

andΨ : Y Z be V-profunctors. We define their composite, denoted Φ #Ψ : X Z by

the formula

(Φ #Ψ)(p , r) �
∨
q∈Q

(
Φ(p , q) ⊗Ψ(q , r)

)
.

Exercise 4.22. Consider the Cost-profunctors Φ : X Y andΨ : Y Z shown below:

•
A

•
B

•
C

•
D

3

3

4

2

5

X B

•
x

•
y

•
z

3 4

3

4

Y B

•
p

•
q

•
r

•
s

2

2

1

1

Z B
11

9

4

4

0

Fill in the matrix for the composite profunctor:

Φ #Ψ p q r s
A ? 24 ? ?

B ? ? ? ?

C ? ? ? ?

D ? ? 9 ?

♦

4.3.2 The categories V-Prof and Feas

A composition rule suggests a category, and there is indeed a category where the

objects are Bool-categories and the morphisms are Bool-profunctors. To make this

work more generally, however, we need to add one technical condition.

Recall fromRemark 1.35 that a preorder is a skeletal preorder if whenever x ≤ y and

y ≤ x, we have x � y. Skeletal preorders are also known as posets. We say a quantale

is skeletal if its underlying preorder is skeletal; Bool and Cost are skeletal quantales.

Theorem 4.23. For any skeletal quantale V, there is a category ProfV whose objects are

V-categories X, whose morphisms are V-profunctors X Y, and with composition

defined as in Definition 4.21.

Definition 4.24. We define Feas B ProfBool.

At this point perhaps you have two questions in mind. What are the identity

morphisms? And why did we need to specialize to skeletal quantales? It turns out

these two questions are closely related.
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Define the unit profunctor UX : X X on a V-category X by the formula

UX(x , y) B X(x , y). (4.25)

How do we interpret this? Recall that, by Definition 2.46, X already assigns to each

pair of elements x , y ∈ X an hom-object X(x , y) ∈ V. The unit profunctor UX just

assigns each pair (x , y) that same object.

In the Bool case the unit profunctor on some preorder X can be drawn like this:

a•

b•
c• d•

e•

X B

a•

b•
c• d•

e•

�: X

Obviously, composing a feasibility relation with with the unit leaves it unchanged; this

is the content of Lemma 4.27.

Exercise 4.26. Choose a not-too-simple Cost-category X. Give a bridge-style diagram

for the unit profunctor UX : X X. ♦

Lemma 4.27. Composing any profunctor Φ : P→ Qwith either unit profunctor, UP or

UQ, returns Φ:

UP #Φ � Φ � Φ # UQ

Proof. We show that UP # Φ � Φ holds; proving Φ � Φ # UQ is similar. Fix p ∈ P and

q ∈ Q. Since V is skeletal, to prove the equality it’s enough to show Φ ≤ UP # Φ and

UP #Φ ≤ Φ. We have one direction:

Φ(p , q) � I ⊗ Φ(p , q) ≤ P(p , p) ⊗ Φ(p , q) ≤
∨
p1∈P

(
P(p , p1) ⊗ Φ(p1 , q)

)
� (UP #Φ)(p , q).

(4.28)

For the other direction, we must show

∨
p1∈P

(
P(p , p1) ⊗ Φ(p1 , q)

)
≤ Φ(p , q). But by

definition of join, this holds iff P(p , p1) ⊗Φ(p1 , q) ≤ Φ(p , q) is true for each p1 ∈ P. This
follows from Definitions 2.46 and 4.8:

P(p , p1) ⊗ Φ(p1 , q) � P(p , p1) ⊗ Φ(p1 , q) ⊗ I ≤ P(p , p1) ⊗ Φ(p1 , q) ⊗ Q(q , q) ≤ Φ(p , q).
(4.29)

�

Exercise 4.30.
1. Justify each of the four steps (�, ≤, ≤,�) in Eq. (4.28).

2. In the case V � Bool, we can directly show each of the four steps in Eq. (4.28) is

actually an equality. How?
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3. Justify each of the three steps (�, ≤, ≤) in Eq. (4.29). ♦

Composition of profunctors is also associative; we leave the proof to you.

Lemma 4.31. Serial composition of profunctors is associative. That is, given profunc-

tors Φ : P→ Q,Ψ : Q→ R, and Υ : R→ S, we have

(Φ #Ψ) # Υ � Φ # (Ψ # Υ).

Exercise 4.32. Prove Lemma 4.31. (Hint: remember to use the fact that V is skeletal.)

♦

So, feasibility relations form a category. Since this is the case, we can describe

feasibility relations using wiring diagrams for categories (see also Section 4.4.2), which

are very simple. Indeed, each box can only have one input and one output, and they’re

connected in a line:

fa 1 h d
b c

On the other hand, we have seen that feasibility relations are the building blocks of

co-design problems, and we know that co-design problems can be depicted with a

much richer wiring diagram, for example:

Σ

Chassis

Motor Battery

Σ

Robot

≤

≤

≤ ≤

≤

≤

≤
Voltage

≤
Current

≤

$ ≤

≤

≥
≥

Weight

(as payload)

Velocity

$

Torque

Speed

$

Weight

Weight

$

This hints that the category Feas has more structure. We’ve seen wiring diagrams

where boxes can have multiple inputs and outputs before, in Chapter 2; there they

depicted morphisms in a monoidal preorder. On other hand the boxes in the wiring

diagrams of Chapter 2 could not have distinct labels, like the boxes in a co-design

problem: all boxes in a wiring diagram for monoidal preorders indicate the order ≤,
while abovewe see boxes labelled by “Chassis”, “Motor”, and so on. Similarly, we know

that Feas is a proper category, not just a preorder. To understand these diagrams then,

we must introduce a new structure, called a monoidal category. A monoidal category is

a categorifiedmonoidal preorder.

Remark 4.33. While we have chosen to define ProfV only for skeletal quantales in

Theorem 4.23, it is not too hard to work with non-skeletal ones. There are two straight-

forward ways to do this. First, we might let the morphisms of ProfV be isomorphism
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classes of V-profunctors. This is analogous to the trick we will use when defining

the category CospanC in Definition 6.45. Second, we might relax what we mean by

category, only requiring composition to be unital and associative ‘up to isomorphism’.

This is also a type of categorification, known as bicategory theory.

In the next section we’ll discuss categorification and introducemonoidal categories.

First though, we finish this section by discussing why profunctors are called profunc-

tors, and by formally introducing something called the collage of a profunctor.

4.3.3 Fun profunctor facts: companions, conjoints, collages

Companions and conjoints. Recall that a preorder is aBool-category and amonotone

map is a Bool-functor. We said above that a profunctor is a generalization of a functor;

how so?

In fact, every V-functor gives rise to two V-profunctors, called the companion and

the conjoint.

Definition 4.34. Let F : P→ Q be a V-functor. The companion of F, denoted F̂ : P Q

and the conjoint of F, denoted qF : Q P are defined to be the following V-profunctors:

F̂(p , q) B Q(F(p), q) and
qF(q , p) B Q(q , F(p))

Let’s consider the Bool case again. One can think of a monotone map F : P→ Q as

a bunch of arrows, one coming out of each vertex p ∈ P and landing at some vertex

F(p) ∈ Q.

•

•

• •

•

P B

•

•

•

�: Q

This looks like the pictures of bridges connecting cities, and if one regards the above

picture in that light, they are seeing the companion F̂. But now mentally reverse every

dotted arrow, and the result would be bridges Q to P. This is a profunctor Q P! We

call it
qF.

Example 4.35. For any preorder P, there is an identity functor id : P→ P. Its compan-

ion and conjoint agree îd � q

id : P P. The resulting profunctor is in fact the unit

profunctor, UP, as defined in Eq. (4.25).
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Exercise 4.36. Check that the companion îd of id : P→ P really has the unit profunctor

formula given in Eq. (4.25). ♦

Example 4.37. Consider the function + : R×R×R→ R, sending a triple (a , b , c) of real
numbers to a + b + c ∈ R. This function is monotonic, because if (a , b , c) ≤ (a′, b′, c′)—
i.e. if a ≤ a′ and b ≤ b′, and c ≤ c′—then obviously a + b + c ≤ a′ + b′ + c′. Thus it has
a companion and a conjoint.

Its companion +̂ : (R × R × R) R is the function that sends (a , b , c , d) to true if
a + b + c ≤ d and to false otherwise.

Exercise 4.38. Let + : R×R×R→ R be as in Example 4.37. What is its conjoint q+? ♦

Remark 4.39 (V-Adjoints). Recall from Definition 1.95 the definition of Galois connec-

tion between preorders P and Q. The definition of adjoint can be extended from the

Bool-enriched setting (of preorders and monotone maps) to the V-enriched setting for

arbitrary monoidal preorders V. In that case, the definition of a V-adjunction is a pair

of V-functors F : P→ Q and G : Q→ P such that the following holds for all p ∈ P and

q ∈ Q.

P(p ,G(q)) � Q(F(p), q) (4.40)

Exercise 4.41. LetV be a skeletal quantale, letP andQ beV-categories, and let F : P→ Q

and G : Q→ P be V-functors.

1. Show that F and G are V-adjoints (as in Eq. (4.40)) if and only if the companion

of the former equals the conjoint of the latter: F̂ � qG.

2. Use this to prove that îd � q

id, as was stated in Example 4.35. ♦

Collage of a profunctor. We have been drawing profunctors as bridges connect-

ing cities. One may get an inkling that given a V-profunctor Φ : X Y between

V-categories X and Y, we have turned Φ into a some sort of new V-category that has X

on the left and Y on the right. This works for any V and profunctor Φ, and is called the

collage construction.

Definition 4.42. Let V be a quantale, let X and Y be V-categories, and let Φ : X Y be

a V-profunctor. The collage of Φ, denoted Col(Φ) is the V-category defined as follows:

(i) Ob(Col(Φ)) B Ob(X) tOb(Y);
(ii) For any a , b ∈ Ob(Col(Φ)), define Col(Φ)(a , b) ∈ V to be

Col(Φ)(a , b) B


X(a , b) if a , b ∈ X
Φ(a , b) if a ∈ X, b ∈ Y
� if a ∈ Y, b ∈ X
Y(a , b) if a , b ∈ Y

There are obvious functors iX : X → Col(Φ) and iY : Y → Col(Φ), sending each object
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and morphism to “itself,” called collage inclusions.

Some pictures will help clarify this.

Example 4.43. Consider the following picture of a Cost-profunctor Φ : X Y:

A•

•
B

2X B

x•

•
y

3 4 �: Y

5

It corresponds to the following matrices

X A B
A 0 2

B ∞ 0

Φ x y
A 5 8

B ∞ ∞

Y x y
x 0 3

y 4 0

A generalized Hasse diagram of the collage can be obtained by simply taking the

union of the Hasse diagrams for X and Y, and adding in the bridges as arrows. Given

the above profunctor Φ, we draw the Hasse diagram for Col(Φ) below left, and the

Cost-matrix representation of the resulting Cost-category on the right:

A•

•
B

x•

•
y

2

5

3 4Col(Φ) �

Col(Φ) A B x y
A 0 2 5 8

B ∞ 0 ∞ ∞
x 0 0 0 3

y 0 0 4 0

Exercise 4.44. Draw a Hasse diagram for the collage of the profunctor shown here:

•
A

•
B

•
C

•
D

3

3

4

2

5X B

x•

•
y

z•3 4

3

4

�: Y

11

9

♦

4.4 Categorification

Here we switch gears, to discuss a general concept called categorification. We will

begin again with the basics, categorifying several of the notions we’ve encountered
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already. The goal is to define compact closed categories and their feedback-style wiring

diagrams. At that point we will return to the story of co-design, and V-profunctors

in general, and show that they do in fact form a compact closed category, and thus

interpret the diagrams we’ve been drawing since Eq. (4.1).

4.4.1 The basic idea of categorification

The general idea of categorification is that we take a thing we know and add structure

to it, so that what were formerly properties become structures. We do this in such a way

that we can recover the thing we categorified by forgetting this new structure. This is

rather vague; let’s give an example.

Basic arithmetic concerns properties of the natural numbers N, such as the fact

that 5 + 3 � 8. One way to categorify N is to use the category FinSet of finite sets

and functions. To obtain a categorification, we replace the brute 5, 3, and 8 with

sets of that many elements, say 5 � {apple, banana, cherry, dragonfruit, elephant},
3 � {apple, tomato, cantaloupe}, and 8 � {Ali, Bob,Carl,Deb, Eli, Fritz,Gem,Helen}
respectively. We also replace +with disjoint union of sets t, and the brute property of

equalitywith the structure of an isomorphism. Whatmakes this a good categorification

is that, havingmade these replacements, the analogue of 5+3 � 8 is still true: 5t3 � 8.

apple

•
banana•
cherry

•
dragonfruit

•
elephant

•

apple

•
tomato•

cantaloupe

•

t

Ali•
Bob•
Carl•
Deb•

Eli•
Fritz•
Gem•
Helen•

�

In this categorified world, we have more structure available to talk about the relation-

ships between objects, so we can be more precise about how they relate to each other.

Thus it’s not the case that 5 t 3 is equal to our chosen eight-element set 8, but more

precisely that there exists an invertible function comparing the two, showing that they

are isomorphic in the category FinSet.
Note that in the above construction we made a number of choices; here we must

beware. Choosing a good categorification—like designing a good algebraic structure

such as that of preorders or quantales—is part of the art of mathematics. There is
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no prescribed way to categorify, and the success of a chosen categorification is often

empirical: its richer structure should allow us more insights into the subject we want

to model.

As another example, an empirically pleasing way to categorify preorders is to cat-

egorify them as, well, categories. In this case, rather than the brute property “there

exists amorphism a → b,” denoted a ≤ b orP(a , b) � true, we instead say “here is a set

of morphisms a → b.” We get a hom-set rather than a hom-Boolean. In fact—to state

this in a way straight out of the primordial ooze—just as preorders are Bool-categories,
ordinary categories are actually Set-categories.

4.4.2 A reflection on wiring diagrams

Suppose we have a preorder. We introduced a very simple sort of wiring diagram in

Section 2.2.2. These allowed us to draw a box

≤x0 x1

whenever x0 ≤ x1. Chaining these together, we could prove facts in our preorder. For

example

≤ ≤ ≤x0 x1 x2 x3

provides a proof that x0 ≤ x3 (the exterior box) using three facts (the interior boxes),

x0 ≤ x1, x1 ≤ x2, and x2 ≤ x3.

As categorified preorders, categories have basically the same sort of wiring diagram

as preorders—namely sequences of boxes inside a box. But since we have replaced the

fact that x0 ≤ x1 with the structure of a set of morphisms, we need to be able to label

our boxes with morphism names:

fA B

Suppose given additional morphisms 1 : B → C, and h : C → D. Representing these

each as boxes like we did for f , we might be tempted to stick them together to form a

new box:

f 1 hA B C D

Ideally this would also be a morphism in our category: after all, we have said that we

can represent morphisms with boxes with one input and one output. But wait, you

say! We don’t know which morphism it is. Is it f # (1 # h)? Or ( f # 1) # h? It’s good that

you are so careful. Luckily, we are saved by the properties that a category must have.

Associativity says f # (1 # h) � ( f # 1) # h, so it doesn’t matter which way we chose to try

to decode the box.



4.4. CATEGORIFICATION 135

Similarly, the identity morphism on an object x is drawn as on the left below, but

we will see that it is not harmful to draw idx in any of the following three ways:

≤x x ≤x x ≤x x

ByDefinition 3.6 themorphisms in a category satisfy twoproperties, called the unitality

property and the associativity property. The unitality says that idx # f � f � f # idy for

any f : x → y. In terms of diagrams this would say

f fx x y f fx y yfx y
= =

This means you can insert or discard any identity morphism you see in a wiring dia-

gram. From this perspective, the coherence laws of a category—that is, the associativity

law and the unitality law—are precisely what are needed to ensure we can lengthen

and shorten wires without ambiguity.

In Section 2.2.2, we also saw wiring diagrams for monoidal preorders. Here we

were allowed to draw boxes which can have multiple typed inputs and outputs, but

with no choice of label (always ≤):

≤
A1

A2

A3

B1

B2

If we combine these ideas, we will obtain a categorification of symmetric monoidal

preorders: symmetric monoidal categories. A symmetric monoidal category is an

algebraic structure in which we have labelled boxes with multiple typed inputs and

outputs:

f

A1

A2

A3

B1

B2

Furthermore, a symmetric monoidal category has a composition rule and a monoidal

product, which permit us to combine these boxes to interpret diagrams like this:

f

1

h
A

B

C

D E

F

G
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Finally, this structure must obey coherence laws, analogous to associativity and uni-

tality in categories, that allow such diagrams to be unambiguously interpreted. In the

next section we will be a bit more formal, but it is useful to keep in mind that, when

we say our data must be “well behaved,” this is all we mean.

4.4.3 Monoidal categories

We defined V-categories, for a symmetric monoidal preorder V in Definition 2.46. Just

like preorders turned out to be special kinds of categories (see Section 3.2.3), monoidal

preorders are special kinds of monoidal categories. And just like we can consider

V-categories for a monoidal preorder, we can also consider V-categories when V is a

monoidal category. This is another sort of categorification.

We will soon meet the monoidal category (Set, {1},×). The monoidal product will

take two sets, S and T, and return the set S × T � {(s , t) | s ∈ S, t ∈ T}. But whereas

for monoidal preorders we had the brute associative property (p ⊗ q) ⊗ r � p ⊗ (q ⊗ r),
the corresponding idea in Set is not quite true:

S × (T ×U) :�
{(

s , (t , u)
) �� s ∈ S, t ∈ T, u ∈ U

}
�

? (S × T) ×U :�
{(
(s , t), u

) �� s ∈ S, t ∈ T, u ∈ U
}
.

They are slightly different sets: the first contains pairs consisting of an elements in S
and an element in T × U, while the second contains pairs consisting of an element in

S × T and an element in U. The sets are not equal, but they are clearly isomorphic,

i.e. the difference between them is “just a matter of bookkeeping.” We thus need a

structure—a bookkeeping isomorphism—to keep track of the associativity:

αs ,t ,u : {(s , (t , u)) | s ∈ S, t ∈ T, u ∈ U} �−→ {((s , t), u) | s ∈ S, t ∈ T, u ∈ U}.

There are a couple things to mention before we dive into these ideas. First, just

because you replace brute things and properties with structures, it does not mean that

you no longer have brute things and properties: new ones emerge! Not only that, but

second, the new brute stuff tends to be more complex than what you started with. For

example, above we replaced the associativity equation with an isomorphism αs ,t ,u , but

now we need a more complex property to ensure that all these α’s behave reasonably!

The only way out of this morass is to add infinitely much structure, which leads one to

“∞-categories,” but we will not discuss that here.

Instead, we will continue with our categorification of monoidal preorders, starting

with a rough definition of symmetric monoidal categories. It’s rough in the sense that

we suppress the technical bookkeeping, hiding it under the name “well behaved.”

RoughDefinition 4.45. LetC be a category. A symmetricmonoidal structure onC consists

of the following constituents:

(i) an object I ∈ Ob(C) called the monoidal unit, and
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(ii) a functor ⊗ : C × C→ C, called the monoidal product
subject to well-behaved, natural isomorphisms

(a) λc : I ⊗ c � c for every c ∈ Ob(C),
(b) ρc : c ⊗ I � c for every c ∈ Ob(C),
(c) αc ,d ,e : (c ⊗ d) ⊗ e � c ⊗ (d ⊗ e) for every c , d , e ∈ Ob(C), and
(d) σc ,d : c ⊗ d � d ⊗ c for every c , d ∈ Ob(C), called the swap map, such that σ ◦σ � id.

A category equipped with a symmetric monoidal structure is called a symmetric
monoidal category.

Remark 4.46. If the isomorphisms in (a), (b), and (c)—but not (d)—are replaced by

equalities, then we say that the monoidal structure is strict, and this is a complete

(non-rough) definition of symmetric strict monoidal category. In fact, symmetric strict

monoidal categories are almost the same thing as symmetric monoidal categories, via

a result known asMac Lane’s coherence theorem. An upshot of this theorem is that we

can, when useful to us, pretend that our monoidal categories are strict: for example,

we implicitly do this whenwe drawwiring diagrams. Ask your friendly neighborhood

category theorist to explain how!

Remark 4.47. For those yet to find a friendly expert category theorist, we make the

following remark. A complete (non-rough) definition of symmetric monoidal category

is that a symmetric monoidal category is a category equipped with an equivalence

to (the underlying category of) a symmetric strict monoidal category. This can be

unpacked, using Remark 4.46 and our comment about equivalence of categories in

Remark 3.59, but we don’t expect you to do so. Instead, we hope this gives you more

incentive to ask a friendly expert category theorist!

Exercise 4.48. Check that monoidal categories indeed generalize monoidal preorders:

a monoidal preorder is a monoidal category (P, I , ⊗) where, for every p , q ∈ P, the set
P(p , q) has at most one element. ♦

Example 4.49. As we said above, there is a monoidal structure on Set where the

monoidal unit is some choice of singleton set, say I B {1}, and the monoidal product

is ⊗ B ×. What it means that × is a functor is that:

• For any pair of objects, i.e. sets, (S, T) ∈ Ob(Set × Set), one obtains a set (S × T) ∈
Ob(Set). We know what it is: the set of pairs {(s , t) | s ∈ S, t ∈ T}.

• For any pair of morphisms, i.e. functions, f : S→ S′ and 1 : T → T′, one obtains a
function ( f ×1) : (S×T) → (S′×T′). Itworks pointwise: ( f ×1)(s , t) B ( f (s), 1(t)).

• These should preserve identities: idS × idT � idS×T for any sets S, T.

• These should preserve composition: for any functions S
f
−→ S′

f ′
−→ S′′ and T

1

−→
T′

1′

−→ T′′, one has

( f × 1) # ( f ′ × 1′) � ( f # 1) × ( f ′ # 1′).
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The four conditions, (a), (b), (c), and (d) give isomorphisms {1} × S � S, etc. These
maps are obvious in the case of Set, e.g. the function {(1, s) | s ∈ S} → S sending (1, s)
to s. We have been calling such things bookkeeping.

Exercise 4.50. Consider the monoidal category (Set, 1,×), together with the diagram

f

1

h
A

B

C

D E

F

G

Suppose that A � B � C � D � F � G � Z and E � B � {true, false}, and
suppose that fC(a) � |a |, fD(a) � a ∗ 5, 1E(d , b) � “d ≤ b,” 1F(d , b) � d − b, and
h(c , e) � if e then c else 1 − c.

1. What are 1E(5, 3) and 1F(5, 3)?
2. What are 1E(3, 5) and 1F(3, 5)?
3. What is h(5, true)?
4. What is h(−5, true)?
5. What is h(−5, false)?

The whole diagram now defines a function A × B→ G × F; call it q.
6. What are qG(−2, 3) and qF(−2, 3)?
7. What are qG(2, 3) and qF(2, 3)? ♦

We will see more monoidal categories throughout the remainder of this book.

4.4.4 Categories enriched in a symmetric monoidal category

Wewill not need this again, but we once promised to explain why V-categories, where

V is a symmetric monoidal preorder, deserve to be seen as types of categories. The

reason, as we have hinted, is that categories should really be called Set-categories. But
wait, Set is not a preorder! We’ll have to generalize—categorify—V-categories.

We now give a rough definition of categories enriched in a symmetric monoidal

category V. As in Definition 4.45, we suppress some technical parts in this sketch,

hiding them under the name “usual associative and unital laws.”

Rough Definition 4.51. Let V be a symmetric monoidal category, as in Definition 4.45.

To specify a category enriched in V, or a V-category, denoted X,

(i) one specifies a collection Ob(X), elements of which are called objects;
(ii) for every pair x , y ∈ Ob(X), one specifies an object X(x , y) ∈ V, called the hom-

object for x , y;
(iii) for every x ∈ Ob(X), one specifies a morphism idx : I → X(x , x) in V, called the
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identity element;
(iv) for each x , y , z ∈ Ob(X), one specifies a morphism # : X(x , y) ⊗ X(y , z) → X(x , z),

called the composition morphism.

These constituents are required to satisfy the usual associative and unital laws.

The precise, non-rough, definition can be found in other sources, e.g. [nLa18],

[Wik18], [Kel05].

Exercise 4.52. Recall from Example 4.49 that V � (Set, {1},×) is a symmetric monoidal

category. This means we can apply Definition 4.51. Does the (rough) definition

roughly agree with the definition of category given in Definition 3.6? Or is there a

subtle difference? ♦

Remark 4.53. We first defined V-categories in Definition 2.46, where V was required to

be a monoidal preorder. To check we’re not abusing our terms, it’s a good idea to make

sure that V-categories as per Definition 2.46 are still V-categories as per Definition 4.51.

The first thing to observe is that every symmetric monoidal preorder is a symmetric

monoidal category (Exercise 4.48). So given a symmetric monoidal preorder V, we can

apply Definition 4.51. The required data (i) and (ii) then get us off to a good start: both

definitions of V-category require objects and hom-objects, and they are specified in the

same way. On the other hand, Definition 4.51 requires two additional pieces of data:

(iii) identity elements and (iv) composition morphisms. Where do these come from?

In the case of preorders, there is at most one morphism between any two objects, so

we do not need to choose an identity element and a composition morphism. Instead,

we just need to make sure that an identity element and a composition morphism exist.

This is exactly what properties (a) and (b) of Definition 2.46 say.

For example, the requirement (iii) that a V-categoryX has a chosen identity element

idx : I → X(x , x) for the object x simply becomes the requirement (a) that I ≤ X(x , x) is
true in V. This is typical of the story of categorification: what were mere properties in

Definition 2.46 have become structures in Definition 4.51.

Exercise 4.54. What are identity elements in Lawvere metric spaces (that is, Cost-
categories)? How do we interpret this in terms of distances? ♦

4.5 Profunctors form a compact closed category

In this section we will define compact closed categories and show that Feas, and more

generally V-profunctors, form such a thing. Compact-closed categories are monoidal
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categories whose wiring diagrams allow feedback. The wiring diagrams look like this:

f1

f2

f3

f4

f5

(4.55)

It’s been a while since we thought about co-design, but these were the kinds of wiring

diagrams we drew, e.g. connecting the chassis, the motor, and the battery in Eq. (4.1).

Compact closed categories are symmetric monoidal categories, with a bit more struc-

ture that allow us to formally interpret the sorts of feedback that occur in co-design

problems. This same structure shows up in many other fields, including quantum

mechanics and dynamical systems.

In Eq. (2.13) and Section 2.2.3 we discussed various flavors of wiring diagrams,

including those with icons for splitting and terminating wires. For compact-closed

categories, our additional icons allow us to bend outputs into inputs, and vice versa.

To keep track of this, however, we draw arrows on our wire, which can either point

forwards or backwards. For example, we can draw this

Person 1 Person 2
pain

sound

fury

complaint

(4.56)

We then add icons—called a cap and a cup—allowing any wire to reverse direction

from forwards to backwards and from backwards to forwards.

sound

sound

sound

sound

(4.57)

Thus we can draw the following

Person 1 Person 2

pain
fury

sound

complaint

and its meaning is equivalent to that of Eq. (4.56).

We will begin by giving the axioms for a compact closed category. Then we

will look again at feasibility relations in co-design—and more generally at enriched

profunctors—and show that they indeed form a compact closed category.
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4.5.1 Compact closed categories

As we said, compact closed categories are symmetric monoidal categories (see Defini-

tion 4.45) with extra structure.

Definition 4.58. Let (C, I , ⊗) be a symmetric monoidal category, and c ∈ Ob(C) an
object. A dual for c consists of three constituents

(i) an object c∗ ∈ Ob(C), called the dual of c,
(ii) a morphism ηc : I → c∗ ⊗ c, called the unit for c,
(iii) a morphism εc : c ⊗ c∗ → I, called the counit for c.
These are required to satisfy two equations for every c ∈ Ob(C), which we draw as

commutative diagrams:

c c

c ⊗ I I ⊗ c

c ⊗ (c∗ ⊗ c) (c ⊗ c∗) ⊗ c

�

c⊗ηc

�

�

εc⊗c

c∗ c∗

I ⊗ c∗ c∗ ⊗ I

(c∗ ⊗ c) ⊗ c∗ c∗ ⊗ (c ⊗ c∗)

�

ηc⊗c∗

�

�

c∗⊗εc

(4.59)

These equations are sometimes called the snake equations.
If for every object c ∈ Ob(C) there exists a dual c∗ for c, then we say that (C, I , ⊗) is

compact closed.

In a compact closed category, each wire is equipped with a direction. For any object

c, a forward-pointing wire labeled c is considered equivalent to a backward-pointing

wire labeled c∗, i.e.
c−→ is the same as

c∗←−. The cup and cap discussed above are in fact

the unit and counit morphisms; they are drawn as follows.

c

ηc

c

c

εc

c

In wiring diagrams, the snake equations (4.59) are then drawn as follows:

c

c

c ⊗ ηc εc ⊗ c

c

c

ηc ⊗ c∗ c∗ ⊗ εc

Note that the pictures in Eq. (4.57) correspond to εsound and η
sound

∗ .
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Recall the notion of monoidal closed preorder; a monoidal category can also be

monoidal closed. This means that for every pair of objects c , d ∈ Ob(C) there is an

object c ( d and an isomorphism C(b ⊗ c , d) � C(b , c ( d), natural in b. While we will

not provide a full proof here, compact closed categories are so-named because they are

a special type of monoidal closed category.

Proposition 4.60. If C is a compact closed category, then

1. C is monoidal closed;

and for any object c ∈ Ob(C),
2. if c∗ and c′ are both duals to c then there is an isomorphism c∗ � c′; and
3. there is an isomorphism between c and its double-dual, c � c∗∗.

To prove 1., the key idea is that for any c and d, the object c ( d is given by c∗ ⊗ d,
and the natural isomorphism C(b ⊗ c , d) � C(b , c ( d) is given by precomposing with

idb ⊗ ηc .

Before returning to co-design,wegive another example of a compact closed category,

called Corel, which we’ll see again in the chapters to come.

Example 4.61. Recall, from Definition 1.18, that an equivalence relation on a set A is a

reflexive, symmetric, and transitive binary relation on A. Given two finite sets, A and

B, a corelation A→ B is an equivalence relation on At B.
So, for example, here is a corelation from a set A having five elements to a set B

having six elements; two elements are equivalent if they are encircled by the same

dashed line.

A B

There exists a category, denoted Corel, where the objects are finite sets, and where

a morphism from A → B is a corelation A → B. The composition rule is simpler to

look at than to write down formally.
2
If in addition to the corelation α : A → B above

we have another corelation β : B→ C

B C

Then the composite β ◦ α of our two corelations is given by
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BA C

�

A C

That is, two elements are equivalent in the composite corelation if we may travel from

one to the other staying within equivalence classes of either α or β.

The category Corel may be equipped with the symmetric monoidal structure

(�,t). This monoidal category is compact closed, with every finite set its own

dual. Indeed, note that for any finite set A there is an equivalence relation on

AtA B {(a , 1), (a , 2) | a ∈ A}where each part simply consists of the two elements (a , 1)
and (a , 2) for each a ∈ A. The unit on a finite set A is the corelation ηA : � → AtA
specified by this equivalence relation; similarly the counit on A is the corelation

εA : AtA→ � specifed by this same equivalence relation.

Exercise 4.62. Consider the set 3 � {1, 2, 3}.
1. Draw a picture of the unit corelation � → 3 t 3.

2. Draw a picture of the counit corelation 3 t 3→ �.
3. Check that the snake equations (4.59) hold. (Since every object is its own dual,

you only need to check one of them.) ♦

4.5.2 Feas as a compact closed category

We close the chapter by returning to co-design and showing that Feas has a compact

closed structure. This is what allows us to draw the kinds of wiring diagrams we saw

in Eqs. (4.1), (4.55), and (4.56): it is what puts actualmathematics behind these pictures.

Instead of just detailing this compact closed structure for Feas � ProfBool, it’s no

extra work to prove that for any skeletal (unital, commutative) quantale (V, I , ⊗) the
profunctor category ProfV of Theorem 4.23 is compact closed, so we’ll discuss this

general fact.

2
To compose corelations α : A → B and β : B → C, we need to construct an equivalence relation

α # β on AtC. To do so requires three steps: (i) consider α and β as relations on At B tC, (ii) take the

transitive closure of their union, and then (iii) restrict to an equivalence relation on AtC. Here is the

formal description. Note that as binary relations, we have α ⊆ (At B)×(At B), and β ⊆ (B tC)×(B tC).
We also have three inclusions: ιAt B : At B→ At B tC, ιB tC : B tC→ At B tC, and ιAtC : AtC→
At B tC. Recalling our notation from Section 1.4, we define

α # β B ι∗AtC((ιAt B)!(α) ∨ (ιB tC)!(β)).
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Theorem 4.63. Let V be a skeletal quantale. The category ProfV can be given the

structure of a compact closed category, with monoidal product given by the product

of V-categories.

Indeed, all we need to do is construct the monoidal structure and duals for objects.

Let’s sketch how this goes.

Monoidal products inProfV are just product categories. In termsofwiringdiagrams,

the monoidal structure looks like stacking wires or boxes on top of one another, with

no new interaction.

Φ

Ψ

Φ ⊗Ψ

We take ourmonoidal product on ProfV to be that given by the product ofV-categories;

the definition was given in Definition 2.74, and we worked out several examples there.

To recall, the formula for the hom-sets in X × Y is given by

(X × Y)((x , y), (x′, y′)) B X(x , x′) ⊗ Y(y , y′).

But monoidal products need to be given on morphisms also, and the morphisms in

ProfV are V-profunctors. So given V-profunctors Φ : X1 X2 and Ψ : Y1 Y2, one

defines a V-profunctor (Φ ×Ψ) : X1 × Y1 X2 × Y2 by

(Φ ×Ψ)((x1 , y1), (x2 , y2)) B Φ(x1 , x2) ⊗Ψ(y1 , y2).

Exercise 4.64. Interpret themonoidal products inProfBool in termsof feasibility. That is,

preorders represent resources ordered by availability (x ≤ x′ means that x is available

given x′) and a profunctor is a feasibility relation. Explain why X × Y makes sense as

the monoidal product of resource preorders X and Y and why Φ ×Ψ makes sense as

the monoidal product of feasibility relations Φ andΨ. ♦

The monoidal unit in ProfV is 1. To define a monoidal structure on ProfV, we need

not only a monoidal product—as defined above—but also a monoidal unit. Recall the

V-category 1; it has one object, say 1, and (1, 1) � I is the monoidal unit of V. We take

1 to be the monoidal unit of ProfV.

Exercise 4.65. In order for 1 to be a monoidal unit, there are supposed to be isomor-

phisms X × 1 X and 1 × X X in ProfV, for any V-category X. What are they?

♦
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Duals in ProfV are just opposite categories. In order to regard ProfV as a compact

closed category (Definition 4.58), it remains to specify duals and the corresponding

cup and cap.

Duals are easy: for every V-category X, its dual is its opposite category Xop
(see

Exercise 2.73). The unit and counit then look like identities. To elaborate, the unit is a

V-profunctor ηX : 1 Xop × X. By definition, this is a V-functor

ηX : 1 × Xop × X→ V;

we define it by ηX(1, x , x′) B X(x , x′). Similarly, the counit is the profunctor εX : (X ×
Xop) 1, defined by εX(x , x′, 1) B X(x , x′).
Exercise 4.66. Check these proposed units and counits do indeed obey the snake

equations Eq. (4.59). ♦

4.6 Summary and further reading

This chapter introduced three important ideas in category theory: profunctors, cate-

gorification, and monoidal categories. Let’s talk about them in turn.

Profunctors generalize binary relations. In particular, we saw that the idea of pro-

functor over a monoidal preorder gave us the additional power necessary to formalize

the idea of a feasibility relation between resource preorders. The idea of a feasibility re-

lation is due to Andrea Censi; he called themmonotone codesign problems. The basic idea
is explained in [Cen15], where he also gives a programming language to specify and

solve codesign problems. In [Cen17], Censi further discusses how to use estimation to

make solving codesign problems computationally efficient.

We also sawprofunctors over the preorderCost, and how to think of these as bridges

between Lawvere metric space. We referred earlier to Lawvere’s paper [Law73]; plenty

more on Cost-profunctors can be found there.

Profunctors, however are vastly more general than the two examples we have dis-

cussed; V-profunctors can be defined not only when V is a preorder, but for any

symmetric monoidal category. A delightful, detailed exposition of profunctors and

related concepts such as equipments, companions and conjoints, symmetric monoidal

bicategories can be found in [Shu08; Shu10].

We have not defined symmetric monoidal bicategories, but you would be correct if

you guessed this is a sort of categorification of symmetric monoidal categories. Baez

and Dolan tell the subtle story of categorifying categories to get ever higher categories
in [BD98]. Crane and Yetter give a number of examples of categorification in [CY96].

Finally,we talkedaboutmonoidal categories andcompact closed categories. Monoidal

categories are a classic, central topic in category theory, and a quick introduction can

be found in [Mac98]. Wiring diagrams play a huge role in this book and in applied

category theory in general; while informally used for years, these were first formalized

in the case of monoidal categories. You can find the details here [JS93; JSV96].
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Compact closed categories are a special type of structuredmonoidal category; there

aremany others. For a broad introduction to the different flavors of monoidal category,

detailed through their various styles of wiring diagram, see [Sel10].
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