
        
   

                 
               

            
             
                

                   
            

            
                  

                 
   

Central limit theorem and strong law of large numbers 

18.600 Problem Set 9 

Welcome to your ninth 18.600 problem set! We will explore the central limit theorem and a related 
statistics problem where one has N i.i.d. samples, one (roughly) knows their standard deviation σ, 
and one wonders how close the observed average is to the true mean. 

The last problem set discussed correlations, including the sort of empirical correlations one 
observes in real world data. We noted that correlations do not always have clear or simple ex-
planations (like “A causes B” or “B causes A” or “C causes both A and B”). This problem set 
will explore efforts to understand causation using controlled experiments. According to https: 
//clinicaltrials.gov/ there are tens of thousands of clinical trials performed every year world-
wide. Many have a very simple form: a test group and a control group, and a common variable 
measured for both groups. Much of what we know about medicine and other areas of science comes 
from experiments like these. 

The idea is that if a variable measured in an experiment has expectation µ and standard deviation 
σ, then the average A of N independent instances of the variable has expectation µ and standard √ 
deviation σ = σ/ N . If N is large then σ is small, and A is (by the central limit theorem) 
approximately normal with mean µ and standard deviation σ. This implies P (|A − µ| ≤ 2σ) ≈ 
.95. Since A is close to µ with high probability, it can be seen as an estimate for µ. If we can 
estimate µ accurately, we can detect whether µ changes when we modify the experiment. Sampling 
N independent instances of a random variable (instead of a single instance) is like looking under √ √ 
a N -magnifying microscope. It lets us detect effects that are smaller (by a N factor) than we 
could otherwise see. 

For example, suppose the amount someone’s blood pressure changes from one measurement to 
another measurement three months later is a random variable X with expectation µ and standard 
deviation σ. Suppose that if a person is given a blood pressure drug, the change is a random variable 
X̃ with standard deviation σ and expectation µ − σ. 

If you try the drug on one person and blood pressure decreases, you can’t tell if this is due to 
1 PN ˜ 1 PN ˜ the drug or chance. But consider A = Xi and A = Xi where Xi are independent N i=1 N i=1 

˜ ˜ ˜ instances of X and Xi are independent instances of X. Now A and A are roughly normal with √ 
standard deviation σ/ N and means µ and µ − σ. If N = 100, then √E([Ã − A)] = −10σ, which 
is (in magnitude) ten times the standard deviation of A and thus 10/ 2 ≈ 7 times the standard 
deviation of (Ã − A). This is now a “visible” difference. 

In statistics, one defines a p-value to be the probabilty that an effect as large as the one observed 
would be obtained under a “null hypothesis.” In the trial described above, one might assume as 

˜ a null hypothesis that A and A are identically distributed (and roughly normal) with standard � √ � 
deviation σ. Then experimentally observe x = (Ã − A). The p-value is Φ x/(σ 2) , which is the 
probability that (Ã − A) ≤ x under the null hypothesis. One (arguably unfortunate) convention is 
to say x is statistically significant if p ≤ .05 (or p ≤ .025 ≈ Φ(−2), which roughly means that either 
x ≤ −2SD(A − Ã) or x ≥ 2SD(A − Ã)). The problem with the convention is that given many trials, 
each measuring many things, one sees many “significant” results due to chance. It can be hard to 
explain to the layperson that “statistically significant” is not a synonym for “meaningful”. In some 
settings, one expects most statistically significant results to be due to chance, not an underlying 
effect.1 

˜ 1In the discussion above, we assume that the standard deviations of X and X are both roughly equal to a known 
value σ. If σ is not known, we can replace it with an approximation s (called a sample standard deviation) computed 
from the data itself. When A is a sample mean, the number of standard deviations (of A) by which it exceeds its 
null hypothesis value is sometimes called a z-score. A t-score is the same except that the standard deviation of A 
is estimated using s in place of σ. If you want to know the probability that a t-score is large, you have to consider 
that one way for it to be large is if the z-score is large, but another is if s happens by chance to be much less than 
σ. Google Student’s t-test orWelch’s t-test or two-sample t-test to find out how to compute p-values that take both of 

˜ these things into account. These tests are based on the assumption that either X and X are normal or the sample size 
is large enough so that the sample means are roughly normal (and the sample standard deviation is not too likely to 
be unusually small). We won’t say any more about t-tests in the course, but you’ll see them a lot if you read academic 
papers, and it’s good to know what they’re talking about. (The chocolate study mentioned above uses a t-test.) 
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If you google Bohannon chocolate you can read an entertaining exposé of the willingness of some 
journals to publish (and news organizations to publicize) dubious statistically significant results. 
Bohannon conducted a tiny (N = 15) trial, tested many parameters, and happened to find p < .05 
for one of them. The trial was real, but anyone familiar with basic statistics who read the paper 
would be almost certain that the finding (“dark chocolate causes weight loss”) was due to chance. 
(Also too good to be true.) It was widely reported anyway. 

A stricter “5 sigma standard,” common in physics, requires |x| ≥ 5SD(Ã − A), or p ≤ Φ(−5) ≈ 
.0000003. The recent Higgs boson discovery used that standard. Very roughly speaking, you smash 
tiny things together lots of times and measure the released energy; if you get more measurements 
in the Higgs boson range than you expect due to chance (and the result is significant at the 5 sigma 
level) you have observed the particle. 

Before launching an experiment, you should have a common sense idea of what the magnitude of 
the effect might be, and make sure that N is large enough for the effect to be visible. For example, 
suppose you think babies who watch your educational baby videos weekly will grow up to have SAT 
scores a 10th of a standard deviation higher than babies who don’t. Then first of all, you should 
realize that this would be a pretty big effect. (If 12 years of expensive private schooling/tutoring 
raise SAT score one standard deviation—perhaps a high estimate—your videos would have to do 
more than an average year of expensive private schooling/tutoring.) And second, you should realize 
that even if the effect is as big as you think, you can’t reliably recognize it with a trial involving 100 
babies. With 10,000 babies in a test group and 10,000 in a control group, the effect would be clear. 
But can you realistically conduct a study this large? 

A. Remark: To prepare for the next problem, suppose that you discover a market inefficiency in 
the form of a mispriced asset. Precisely, you discover an asset priced at $10 that has a p > 1/2 
chance to go up to $11 over the next day or so (before reaching $9) and a (1 − p) < 1/2 chance to 
go down to $9 (before reaching $11). By buying r shares at $10 and them selling when the price 
reaches $9 or $11, you have an opportunity to make a bet that will win r dollars with probability 
p > 1/2 and lose r dollars with probability (1 − p). Let’s ignore transaction costs and bid-ask 
spread. (And assume that, unlike all those people who merely think they can recognize market 
inefficiencies, you actually can. Assume also that your wisdom was obtained legally — so no risk of 
an insider trading conviction!) So now you effectively have an opportunity to bet r dollars on a p 
coin with p > 1/2. The question is this: how much should you bet? In expectation you will make 
pr + (1 − p)(−r) = (2p − 1)r dollars off this bet, so to maximize your expected payoff, you should 
bet as much as you possibly can. But is that really wise? If you repeatedly bet all our money on 
p-coins, it might not be long before you lose everything. The Kelly strategy (which comes from 
assuming utility is a logarithmic function of wealth — look it up) states that instead of betting 
everything, you should bet a 2p − 1 fraction of your current fortune. The next problem is a simple 
question about this strategy. 

1. Problem 67: Consider a gambler who, at each gamble, either wins or loses her bet with 
respective probabilities p and 1 − p. A popular gambling system knkown as the Kelly 
strategy is to always bet the fraction 2p − 1 of your current fortune when p > 1/2. Compute 
the expected fortune after n gambles of a gambler who starts with x units and employs the 
Kelly strategy. 

B. If is N is (approximately) a normal random variable with mean µ and variance σ2 , then this 
problem will refer to the interval [µ − 2σ, µ + 2σ] as the 95-percent interval for N . The random 
variable N lies within this interval about a Φ(2) − Φ(−2) ≈ .95 fraction of the time. We’d be 
surprised if N were far outside this interval. On the other hand, one can show that 1.5 ≤ |N | ≤ 2.5 
about 12 percent of the time: hence, outcomes near the edge of this interval are not surprising at 
all. Give the 95-percent interval (whose endpoints are mean plus or minus two standard 
deviations) for each of the quantities below. Try to solve these problems quickly and in your head 
if you can (okay to write interval without showing work). The better you get at this, the more 
you’ll apply it in daily life. (Simple rule: when you sum N i.i.d. copies of something, SD is 
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√ √ 
multipled by N . When you average N i.i.d. copies, SD is divided by N . Remember that SD is √ √ 
npq for binomial and λ for Poisson.) 

1. A university admits 600 students and expects 60 percent to accept their offers. Give the 
95-percent interval for the university’s yield rate. 

2. 10000 people are infected with a certain flu virus. The expected duration of symptoms is 10 
days, with standard deviation 5 days. Give the 95-percent interval for average duration. 

3. There is a group of 100 college students at an elite university. After ten years, the income of 
each student will be an independent random variable with mean $150,000 and standard 
deviation $50,000. Give the 95-percent interval for the overall average income of the student 
collection. 

4. Lisa the Lyft driver gets an independent rating from each passenger. The scores are 5 with 
probability .8 and 4 with probability .2 so her expected rating is 4.8. Give a 95-percent 
interval for her average rating after 100 trips. Laura the Lyft driver’s scores are 5 with 
probability .9 and 1 with probability .1 so her expected rating is 4.6. Give the 95-percent 
interval for her average after 100 trips. Hint: Laura’s scores should fluctuate a lot more than 
Lisa’s. 

5. Alice takes a course with 2 midterms (each 25% of grade) and one final (50% percent of 
grade). Partial credit rules vary, but roughly speaking each midterm has 25 key ideas (and the 
final 50 key ideas) that one either gets or doesn’t. Alice gets each of these (independently) 
with probability .8. Compute the 95-percent interval for her overall percentage. 

6. Bob’s favorite basketball team scores X1 + 2X2 + 3X3 points in a game, where Xi are 
independent Poissons with λ1 = 15, λ2 = 30, λ3 = 10. Give the 95-percent interval for the 
score. 

7. Carol’s fund makes 25 risky (independent) investments per year. Each earns a return with 
expectation 5 percent and SD 20 percent. Give the 95-percent interval for the average return. 

C. In the modifications below the (roughly) normal random variable N (for which you gave a 95 
˜ percent interval) is replaced by a (roughly) normal N with different mean but (roughly) same 

standard deviation. Indicate the number of standard deviations (of N) by which the mean is 
shifted. That is, compute (E[Ñ ] − E[N ])/SD(N). (Okay to give number without showing work.) 
This describes how detectable the change is. (The corresponding 95-percent intervals overlap if this 
number is less than 4; see http://rpsychologist.com/d3/cohend/ for vizualization.) And 

˜ whether one can say, “Given independent instances of N and N , the latter will be noticeably 
better with high probability.” 

1’. The university offers a nicer financial aid package, increasing expected yield to 66%. 

2’. The patients take antiviral drugs that reduce expected duration from 10 to 9 days. 

3’. The group of students takes 18.600, which makes them more savvy and productive by every 
measure—and in particular increases their expected income by $5000. 

4’. Both Lyft drivers begin offering free bottled water, which raises their expected scores by .08. 

5’. Alice stops studying altogether, which reduces her correctness probability from .8 to .08. 

6’. Bob switches allegiance to the Golden State Warriors, who (at that moment) average 120 
points per game. 

7’. Carol hires a smarter quantitative analyst and increases expected returns to 7 percent. 
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Remark: Does it disturb anyone that an effect as large as the one I snarkily attribute to 18.600 is 
still too small too to reliably measure, even with an N = 100 randomized study? 

Remark: Lyft computes a driver score based on the past 100 rides, and Uber computes a score 
based on the past 500 rides. Both companies encourage drivers to maintain scores above 4.8. 
(Lower scores bring “needs improvement” flags from Lyft and disqualify drivers from UberBLACK 
in New York. Accounts may be deactivated if scores go too much lower.) If you peruse message 
boards, you’ll see that drivers (and passengers) worry a lot about the extent to which scores 
fluctuate due to chance. It is somehow disconcerting that a single 4 is no big deal (some riders 
consider 4 a good score) but a 4 from half your riders can get you fired. Alice finds it similarly 
disconcerting that even with study her 95-percent interval may span two or three letter grades. 
Grades are noisy measurements, maybe more so than we would like. Actual NBA scores are 
roughly normal with mean above 100, SD about 12. 
https://squared2020.com/2015/11/01/hypothesis-testing-is-nba-scoring-up-this-year/ 
Here unpredictability is part of the appeal—better teams don’t always win. Note: shot clocks and 
court-crossing times might make “time between shots” follow a non-exponential distribution—and 
may cause “number of shots taken” to vary less than a Poisson of the same mean, at least outside 
of the game’s final minute. See https://moldham74.github.io/AussieCAS/papers/Gon.pdf. 
Also, if possessions alternate, then “possessions per team” are not independent for two opposing 
teams, and one has to account for this to model win probabilities. And as long as our problem 
takes place in an imaginary universe, let’s say the Celtics are the ones with 120 points per game. :) 
See https://www.teamrankings.com/nba/stat/points-per-game for current stats. 

Remark: Here is another model for Alice’s grade: suppose Alice has an ability level x ∈ [0, 100], 
and each problem has a difficulty level y ∈ [0, 100], and Alice solves the problem with probability 1 
if x > y and with probability 0 otherwise. If the exam problems have difficulties 1, 2, . . . , 100 then 
Alice’s score is the integer part of x with probability one. Unlike the model above, this one 
predicts that repeated tests yield the same score. (This can be checked empirically; google 
inter-rater reliability.) In reality, even with careful design, it is not possible to make an exam 
perfectly reliable in this way. (A test that just measures one’s height in centimeters would be 
nearly perfectly reliable but would still have some measurement error.) 

Remark: See https://www.act.org/content/dam/act/unsecured/documents/Research-
Letter-about-ACT-Writing.pdf for an ACT reliability study (from when essay had a 36-pt 
scale). It writes: 

1. A score of 20 on the ACT composite would indicate that there is a two-out-of-three chance 
that the student’s true score would be between 19 and 21. 

2. A score of 20 on ACT math, English, reading or science would indicate that there is a 
two-out-of-three chance that the student’s true score would be between 18 and 22. 

3. A score of 20 on ACT wrting would indicate that there is a two-out-of-three chance that the 
student’s true score would be between 16 and 24. 

The writing score is especially noisy. Roughly doubling interval width to get a 95 percent interval, 
one might phrase it this way: A score of 28 on writing would indicate a 95 percent chance that the 
student’s true score would be between 20 (below average at most colleges) and 36 (best possible). 
Some argue that even noisy measurements are informative, and should be used but given low 
weight—just as though the essay were one of many exam problems. (Recall the previous problem 
set settings, where the noisier a measurement is, the less one changes conditional expectation in 
response to it.) Others argue that noisiness causes stress and all but forces students to take exams 
multiple times. Other measurements (interviews, letters, scores based on extracurriculars, etc.) 
might be just as noisy, but the noise may be harder to quantify. Last I checked, MIT does not 
require ACT or SAT essays. 

D. On Blueberry Planet, researchers plan to assemble two groups with N people each. Each group 
will take a fitness test before and after a six month period. Let A1 be the average fitness 
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improvement for the control group and A2 the average fitness improvement for a group assigned to 
eat blueberries. The improvement for each individual in the control group is an independent 
random variable with variance σ2 and mean µ. The improvement for each individual in the 
blueberry eating group is an independent random variable with variance σ2 and mean µ + rb where 
r is an unknown parameter and b is the number of blueberries the blueberry eaters are assigned to 
eat each day. (We are assuming a linear dose response so 2 blueberries have twice the effect of 1 
blueberry, etc.) Assume N is large enough so that A1 and A2 are approximately normal with given 
means and variances. Suppose that there is a limited research budget for blueberries, so Nb is 
fixed. For the purpose of estimating the size of r, would it be better to take N large and b small, or 
to take N small and b large? Explain. 

Remark: Realistically, the linearity of the dose response probably only holds up to a certain 
point, and there is some practical upper bound on b. Also, it is unlikely that blueberries would 
really be the most expensive part of this experiment. But if one replaces “blueberries” with years 
of exposure to a new educational technique (which requires training teachers, etc.) or a new crime 
prevention technique, it might make sense to assume Nb is limited. 

Remark: Drug abuse programs like DARE would be worth their cost even if they only saved a 
few people. But it is hard to say (google “is DARE effective”) how measurable the effects are. 
Could it be that (like so many things educators and parents do...) it has a long term effect that is 
large enough to matter but too small to reliably detect with the experiments we can do? 

E. Interpret/justify the following: the p-value computed from a simple experiment (as described in 
the intro to this pset) is a random variable. If an effect size is large enough so that the median 
p-value is Φ(−2) then in a similar trial with 6.25 times as many participants the median p-value 
would be Φ(−5). 

Remark: In a previous problem set, we discussed Cautious Science Planet and Speculative 
Science Planet, where hypotheses with different a priori likelihood were tested. Another way two 
planets could differ is in the p-value they use to define significance. Should medicine and other 
sciences should adopt the 5σ standard used in physics (and somehow assemble the resources to 
make their data sets 6.25 times larger) or maybe an even stricter standard? This would lead to a 
much smaller number of positive findings, but the findings would be more trustworthy. On the 
other hand, if you google Is the FDA too conservative or too aggressive? you can read an argument 
by an MIT professor and student that the FDA should approve drugs for incurable cancers (when 
the patient will die anyway without treatment) using a lower standard of evidence than they 
currently use. A more general question (does exercise alleviate depression?) might be addressed 
using many kinds of experiments. Some argue that many small experiments are more informative 
than one large one, since the idiosyncracies of the experiment designs average out; but 
meta-analysis (combining multiple studies to get a conclusion) is a tricky art, and there may be a 
lot of bias in what is and isn’t published. 

F. Kevin and James are playing a simplified two-person version of Jeopardy (no daily doubles or 
final jeopardy) with exactly 60 questions, and James is the stronger player. Let Ji be 1 if James 
answers the ith question right, −1 if he answers it wrong, zero otherwise. Let Ki be 1 if Kevin 
answers the ith question right, −1 if he answers it wrong, zero otherwise. Write αi = Ji − Ki. 
Assume that the αi are i.i.d. with mean .3 and variance 1. The total game score difference (final P 
score for James minus final score for Kevin) is D = αiβi where βi is the “value” of the ith 
question. James wins if D is positive. 

1. Compute the mean, variance and standard deviation of D if each βi is equal to 900. 

2. Compute the mean, variance and standard deviation of D if there are six βi values for each 
number in the sequence {200, 400, 600, 800, 1000, 400, 800, 1200, 1600, 2000}. (Note, since 400 
and 800 appear twice, this means 12 questions of each of those values.) Hint: put something 
like 
6 (Sum[(200 i)^2, {i, 1, 5}] + Sum[(400 i)^2, {i, 1, 5}] ) 
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into wolframalpha.com as part of your variance calculation 

3. Assuming D is roughly normal (with mean/variance you just computed) approximate the 
probability that Kevin wins in each of the two scenarios above. Work out numerical answers. 

Remark: Sometimes things that make games fun to watch (like point values that differ from 
question to question) also make outcomes less predictable. That is, they increase the probability 
that a “stronger” player will lose. James Holzhauer recently won 32 Jeopardy games in row and 
Ken Jennings won 74. Would you expect even longer streaks if the questions were assigned equal 
values and there were no daily doubles or final jeopardy wagers? Note: in the above story James 
expects 18 more questions (net) than Kevin, a huge difference. But both Holzhauer and Jennings 
averaged about 35 correct answers (net) per game, per some site I just googled, with opponent 
average likely in the single digits. Of course, for the purpose of maintaining a streak, strength of 
average opponent might matter less than strength of occasional exceptional opponent. 

G. Harry knows that either Hypothesis X is true, and a test will give a positive answer 80 percent 
of time, or Hypothesis X is false, and a test will give a positive answer 5 percent of the time. Harry 
thinks a priori that Hypothesis X is equally likely to be true or false. Harry does his own test and 
the result is positive. 

(a) Given that the test is positive, what is Harry’s revised assessment of the probability that 
Hypothesis X is true? 

Sherry also thinks a priori that Hypothesis X is equally likely to be true or false. Sherry knows 
(from her research world connections) that exactly ten groups (including Harry’s) have conducted 
independent tests of the kind that Harry conducted. She knows that they have all had ample time 
to publish the results, but she has not yet heard the results. Sherry has electronic access to the 
prestigious We Only Publish Positive and Original Results Medical Journal (WOPPORMJ). Sherry 
knows that each group with a positive test would immediately submit to WOPPORMJ, which 
would publish only the first one received. So WOPPORMJ will have a publication if and only if at 
least one of the tests was positive. Sherry opens WOPPORMJ and finds an article (by Harry) 
announcing the positive result. 

(b) Given Sherry’s new information (that at least one of the ten tests was positive), what is 
Sherry’s revised assessment of the probability that Hypothesis X is true? 

That evening, Sherry and Harry meet for the first time at a party. They discuss their revised 
probability estimates. Harry tells Sherry that he is upset that she has not raised her probability 
estimate as much as he has. They decide to try to come up with a revised probability using all of 
the information they have together. The conversation starts like this: 

1. Harry: I computed my probability with correct probabilistic reasoning. Then you came 
along and said you knew that nine other teams tested for X, but you don’t know anything 
about what they found. You have given me no new information about Hypothesis X and thus 
no reason to change my assessment of the probability it is true. 

2. Sherry: I computed my probability with correct probabilistic reasoning. When I did my 
computation, I knew that WOPPORMJ had accepted a paper by someone named Harry. I 
have learned nothing by meeting you and see no reason to change my view. 

But, being smart and curious people, they continue to talk and reason together. 

(c) Assuming that they both apply sound logic, what happens? Do they end up both agreeing 
with Sherry’s probability estimate, or both agreeing with Harry’s estimate, or both agreeing 
on something else, or continuing to disagree in some way? (There is a hint on the next page, 
but don’t look at it before you need to.) 

Remark: Some people think that all experimental data should be published—regardless of 
whether it is negative or unoriginal (and also regardless of whether it is bad for the financial 
bottom line or the political agenda of the group funding the study...) Look up “clinical trials 
registry” to read about relevant efforts this direction. 
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HINT BELOW: 

HINT: You actually need another assumption to pin down the answer. First solve the problem 
with the first assumption below (which may be what you were tacitly assuming anyway). Then 
solve it with the second assumption, which will give you a different answer. 

1. The order in which the ten groups completed their tests was a priori random (all 10! 
permutations equally likely and independent of hypothesis truthfulness and test outcomes). 
So to describe a state space element, one needs to know the truthfulness of Hypothesis X 
(two possibilities), the outcomes of the 10 tests (210 possibilities), and the submission order 
(10! possibilities). So |S| = 2 · 210 · 10!. Harry had no idea before submitting his paper what 
the ordering was, and Harry and Sherry have no further information about that (beyond the 
fact that they know Harry’s paper was accepted). 

2. Harry knows that his was the first group to complete the test. 
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