
   

   

               
                  

                
                 

   
                
                       

                 
                      

                   
                
     

            
                  

                 
               

       
                

           
              

             
            

                   
             

           
      

             
                 

                 
                
               

                 
                  

          
              

           
                   

                   
                   

                  
                 

Correlation, regression, and paradox 

18.600 Problem Set 8 

Welcome to your eighth 18.600 problem set! Let’s think about correlations. Given a population of 
people who each have two attributes, like ACT and SAT scores, you can choose a member at random 
and interpret the attributes of the person you choose as random variables. These variables have a 
correlation coefficient, which you’d expect to be high for ACT and SAT scores (maybe about .87, per 
some site I googled). 

How high is a .87 correlation really? Imagine X, Y1 and Y2 are independent standard normals. 
Imagine that X is your “raw test-taking acumen” and X + aY1 is your score on one test and X + aY2 is 
your score on another test, where the aYi are random noise terms. Then ρ(X+aY1, X+aY2) = 1/(1+a2), 
which is about .86 if a = .4. In this case, the standard deviation of the “noise factor” is .4 times the 
standard deviation of the “raw ability factor,” which may seem like quite a bit of noise (despite the fact 
that .86 seems pretty close to 1). Play the game http://guessthecorrelation.com/ to get a sense of 
what different correlation levels look like. 

Correlations inform beliefs. The strong observed correlations between cigarettes and early death 
(and many specific ailments like lung cancer) are a huge part of the of evidence that cigarettes are 
unhealthy. The discovery of the unhealthiness of smoking has saved millions of lives — a win for 
observational statistics. (Also an embarrassment, given that it took until the second half of 20th 
century for the case to be made persuasively.) 

On the other hand, we all know the correlation does not imply causation cliché. The “spurious 
correlation” website tylervigen.com illustrates this with strong correlations between seemingly unrelated 
annual statistics like sociology doctorates and space launches, or pool drownings and Nicolas Cage 
films. The 2012 NEJM article Chocolate consumption, Cognitive function, and Nobel Laureates (which 
presents a real country-to-country correlation between chocolate consumption and Nobel prize winning) 
is a clever parody of the way observed correlations are used in medicine (it’s only three pages; look it 
up). It earnestly walks the reader through causal hypotheses (brain-boosting flavanoids), reverse causal 
hypotheses (chocolate consumed at Nobel prize celebrations) and common demoninator hypotheses 
(geography, climate, socioeconomics), mostly dismissing the latter. 

Alongside correlation does not imply causation one might add correlation does not imply correla-
tion, or more precisely, reported correlation in some data set does not imply correlation in the larger 
population, or correlation that will persist in time. Google study “is linked to” and scroll through a 
few pages of hits. Some sound fairly plausible (“walking/cycling to work linked to lower body fat”) 
but others raise eyebrows. Clicking through, you find that sometimes the correlations are weak, the 
sample sizes small, the stories (at least at first glance) far fetched. A news organization’s criteria for 
deciding which links to publicize may differ from those a careful scientist would use to decide what to 
take seriously and/or study further (e.g. with randomized trials). Reader beware. 

This problem set will also feature moment generating functions, regression lines (which you will 
encounter often in life) and a phenomenon called regression to the mean. 

On a rather different note, many of you are familiar with Pascal’s wager. The idea is that if choosing 
A over B comes with a finite cost but a positive probability (however small) of an infinite payoff, then 
one should always choose A. Pascal’s conclusion was that if living a virtuous life leads (with even a tiny 
probability) to an eternal reward, then it is a worthwhile sacrifice to make. A common criticism is that 
this kind of thinking can lead to violence (killing heretics who might lead souls astray, or dissidents who 
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might obstruct an endless Marxist utopia) as well as virtue. A more mathematical concern is that in 
principle there may be many choices, each of which we expect to do an infinite amount of good (and 
perhaps also an infinite amount of harm) and that there is no obvious mathematical way to compare 
the competing infinities. 

The comparison difficulties associated with infinite expectations can arise even when the payoffs 
themselves are finite with probability one (e.g., if the utility payout is a Cauchy random variable). 
This problem set illustrates this point with a particularly vexing form of a famous envelope switching 
paradox. Interestingly, in this paradox, the conditional expectations used for decision making are all 
finite; but a certain a priori expectation is infinite, and that is the root of the paradox. I hope that 
you enjoy thinking about the story, and that it causes you at most a finite amount of existential angst. 

A. FROM TEXTBOOK CHAPTER SEVEN: 

−y e 1. Problem 51: The joint density of X and Y is given by f(x, y) = y , 0 < x < y, 0 < y < ∞. 

Compute E[X3|Y = y]. 

Remark: The next problem will help solidify your understanding of moment generating functions. 
These play a central role in large deviation theory, which in turn plays a central role in information 
theory, data compression, and statistical physics. In this course, we mostly use moment generating 
functions (and the closely related characteristic functions) as tools for proving the central limit 
theorem and the weak law of large numbers. 

2. Theoretical Exercise 48: If Y = aX + b, where a and b are constants, express the moment 
generating function of Y in terms of the moment generating function of X. 

B. Suppose that X and Y both have mean zero and variance one, so that E[X2] = E[Y 2] = 1 and 
E[X] = E[Y ] = 0. 

(a) Check that the correlation coefficient between X and Y is ρ = E[XY ]. 

(b) Let r be the value of the real number a for which E[(Y − aX)2] is minimal. Show that r 
depends only on ρ and determine r as a function of ρ. 

(c) Check that whenever Z has finite variance and finite expectation, the real number b that 
minimizes the quantity E[(Z − b)2] is b = E[Z]. 

(d) Conclude that the quantity E[(Y − aX − b)2] is minimized when a = r and b = 0. 

Remark: We have shown that among all affine functions of X (i.e. all sums of the form aX + b for 
real a and b) the one that best “approximates” Y in (in terms of minimizing expected square 
difference) is rX. This function is commonly called the least squares regression line for approximating 
Y (which we call a “dependent variable”) as a function of X (the “independent variable”). If r = .1, it 
may seem odd that .1X is considered an approximation for Y (when Y is the dependent variable) 
while .1Y is considered an approximation for X (when X is the dependent variable). The lines 
y = .1x and x = .1y are pretty different after all. But the lines are defined in different ways, and when 
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|r| is small, the correlation is small, so that neither line is an especially close approximation. If r = 1 
then ρ = 1 and both lines are the same (since X and Y are equal with probability one in this case). 

Remark: The above analysis can be easily generalized (by simply rescaling and translating the 
(X, Y ) plane) to the case that X and Y have non-zero mean and variances other than one. The 
subject known as regression analysis encompasses this generalization along with further 
generalizations involving multiple dependent variables, as well as settings where a larger collection of 
functions plays the role that affine functions played for us. Regressions are ubiquitous in academic 
disciplines that use data. Given data in a spreadsheet, you can compute and plot regression lines with 
the push of a button (find a chart online; copy or import it into a free spreadsheet like 
sheets.google.com; control click letter on top of two distinct columns to highlight them; click the chart 
icon; then Customize, Series, Trendline... or if that doesn’t work google spreadsheet regression for 
better instructions; or type “linear fit {1, 3}{2, 4}{4, 5}{3, 5}” into wolframalpha to see a simple 
example). For a more difficult setting, imagine that I give you a set of pictures, and assign a number 
to each picture indicating how closely it resembles a cat. If you had a nice way to approximate this 
function (from the set of digitally encoded pictures to the set of numbers) you could program it into 
your computer and enable your computer to recognize cats. Your procedure for approximating this 
function will likely be more complicated than a simple regression — it may involve neural nets or 
other tools from machine learning. Statistics and machine learning are hot topics, and may be part of 
your further coursework at MIT. (Note: even if your cat recognizing algorithm is a sophisticated 
neural net refined by hundreds of tinkering MIT alumni, you will still use the math behind the 
“clinical trial” stories in this course when you try to test your algorithm’s effectivness.) 

C. On Smoker Planet, each person decides at age 18, according to a fair coin toss, whether or not to 
become a life long cigarette smoker. A person who does not become a smoker will never smoke at all 
and will die at a random age, the expectation of which is 75 years, with a standard deviation of 10 
years. If a person becomes a smoker, that person will smoke exactly 20 cigarettes per day throughout 
life, and the expected age at death will be 65 years, with a standard deviation of 10 years. 

(a) On this planet, let S ∈ {0, 20} be cigarettes smoked daily, and let L be life duration. What is p 
the correlation ρ(S, L) := Cov(S, L)/ Var(S)Var(L)? Hint: start by using the 
Var(L) = Var(E[L|S]) + E[Var(L|S)] identity from lecture to get Var(L). Working out Var(S) 
shouldn’t be hard. Then attack the two terms of Cov(S, L) = E[SL] − E[S]E[L]. Note that 
E[SL] = P {S = 0}E[SL|S = 0] + P {S = 20}E[SL|S = 20]. 

On Bad Celery Planet, it turns out that (through some poorly understood mechanism) celery is 
unhealthy. In fact, a single piecce of celery is as unhealthy as a single cigarette on Smoker Planet. 
However, nobody eats 20 pieces a day for a lifetime. Everybody has a little bit, in varying amounts 
throughout life. Here is how that works. Each year between age 18 and age 58 a person tosses a fair 
coin to decide whether to be a celery eater that year. If the coin comes up heads, that person will eat, 
on average, one piece of celery per day for the entire year (mostly from company vegetable platters). 
Given that one consumes celery for K of the possible 40 years (celery consumption after age 58 has no 
effect, and everyone lives to be at least 58) one expects to live until age 75 − K/80, with a standard 
deviation of 10 years. (So, indeed, eating 1 celery stick per day for the full 40 years is about 1/20 as 
harmful as smoking 20 cigarettes a day for a lifetime.) 
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(b) Write L for a person’s life duration. On this planet, what is the correlation p 
ρ[K, L] = Cov[K, L]/ Var(K)Var(L)? Hint: start by using the 
Var(L) = Var(E[L|K]) + E[Var(L|K)] identity from lecture to get Var(L). Working out Var(K) 
shouldn’t be hard. Then attack Cov(K, L) = E[KL] − E[K]E[L] as in (a). 

Remark: The answer to (b) is much smaller than the answer to (a). So small that it would be very 
hard to demonstrate this effect without a huge sample size. You would need several hundred thousand 
to be confident that you would see a statistically significant correlation. In the real world, people 
worry that many products have mild carcinogenic effects (effects in the ominous “big enough to 
matter, small enough to be hard to observe”) category. Detectability is a big problem. Moreover, even 
if you observe the effect in a large sample, people will note that those who eat more celery are 
statistically different from those who eat less (more health conscious, more prone to eat carrots and 
ranch dressing, etc.) The effects of these differences could easily swamp any effects of the celery itself. 
One try to “control” for obvious differences (e.g., with multi-variable regressions) but one cannot 
account for all of them, and the question of what to do about observed correlation is famously hard. 
For example, the World Health Organization website says the following about red meat: “Eating red 
meat has not yet been established as a cause of cancer. However, if the reported associations were 
proven to be causal, the Global Burden of Disease Project has estimated that diets high in red meat 
could be responsible for 50,000 cancer deaths per year worldwide. These numbers contrast with about 
1 million cancer deaths per year globally due to tobacco smoking, 600,000 per year due to alcohol 
consumption, and more than 200,000 per year due to air pollution.” Shall I eat that burger or not? 

D. Let X be a normal random variable with mean µ and variance σ1
2 . Let Y be an independent 

normal random variable with mean 0 and variance σ2
2 . Write Z = X + Y . Let Ỹ be an independent 

random variable with the same law as Y . Write Z̃ = X + Ỹ . 

(a) Compute the correlation coefficient ρ of Z̃ and Z. 

(b) Compute E[X|Z] and E[Z̃|Z]. Express the answer in a simple form involving ρ. Hint: consider 
case µ = 0 first and find fX,Z (x, z). You know FX (x) and fZ|X (z). Alternate hint: if Xi are =x 

i.i.d. normal with variance σ2 , mean 0, and n ≥ k then argue by symmetry that P Pk P Pk n n E[ i=1 Xi| i=1 Xi = z] = z(k/n). Write X = i=1 Xi and Y = Xi. Fiddle with k, n, σ2 
k+1 

to handle the case that σ1
2/σ2 is rational. 2 

Note that E[Z̃|Z] is closer to E[Z̃] = E[Z] than Z is. This is a case of what is called “regression to 
the mean.” Let’s tell a few stories about that. An entrant to a free throw shooting competition has a 
skill level that we denote by X, which is randomly distributed as a normal random variable with mean 
µ and variance 2. During the actual competition, there is an independent luck factor that we denote 
by Y , which is a normal random variable with variance 1 and mean zero. The entrant’s overall score is 
a Z = X + Y . If the entrant participates in a second tournament, the new score will be Z̃ = X + Ỹ 

where Ỹ is an independent luck factor with the same law as Y . 

(c) Compute the standard deviation of Z. Given that Z is two standard deviations above its 
expectation, how many standard deviations above its expectation do we expect Z̃ to be? 

Imagine that people in some large group are randomly assigned to teams of 9 people each. Each 
person’s skill level is an i.i.d. Gaussian with mean 0 and standard deviation 1. The team’s skill level is 
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the sum of the individual skill levels. You can check that a team’s skill level is a Gaussian random 
variable with mean 0 and standard deviation 3. 

(d) Given that a team’s total skill level is 6 (two standard deviations above the mean for teams) 
what do we expect the skill level of a randomly chosen team member to be? 

Each drug generated by a lab has an “true effectiveness” which is a normal random variable X with 
variance 1 and expectation 0. In a statistical trial, there is an independent “due-to-luck effectivness” 
normal random variable Y with variance 1 and expectation 0, and the “observed effectiveness” is 
Z = X + Y . 

(e) If we are given that the observed effectiveness is 2, what would we expect the observed 
effectiveness to be in a second independent study of the same drug? 

Remark: The following is from the abstract of the Nosek reproducibility study (recall Problem Set 3) 
which attempted to reproduce 100 published psychology experiments: “The mean effect size (r) of the 
replication effects (Mr = 0.197, SD = 0.257) was half the magnitude of the mean effect size of the 
original effects (Mr = 0.403, SD = 0.188), representing a substantial decline.” The fact that the effect 
sizes in the attempted replications were smaller than those in the original studies is not surprising 
from a regression to the mean point of view. Google Iorns reproducibility for analogous work on cancer 
studies. 

E. This problem will apply the “regression to the mean” ideas from the previous problem to a toy 
model for university admissions. Think about admissions at a (somewhat arbitrarily chosen) group of 
five selective universities: Harvard, Stanford, MIT, Yale and Princeton. For fall 2017, these 
universities all had (per usnews.com article I looked up) “yield rates” between 65 and 83 percent and 
class sizes between 1097 and 1703. If we refer to an admission letter to one of these five universities as 
a golden ticket then in all 9841 golden tickets were issued and 7372 were used (i.e., a total of 7372 first 
year students enrolled at these schools). This means there were 2469 unused golden tickets. 

Who had these 2469 unused golden tickets? Somebody presumbly has a rough answer, but let’s just 
speculate. One wild possibility is that all unused tickets were held by 494 lucky students (with 5 
unused golden tickets each) who all crossed the Atlantic to attend Oxford and Cambridge. If this were 
true, then none of the 7372 golden ticket users would have an extra unused ticket. Another wild 
possibility is that exactly 2469 of the 7372 golden ticket users (about 33 percent) have exactly one 
unused ticket. In any case, the fraction of golden ticket users with an unused ticket to spare is between 
0 and 33, which implies that the overwhelming majority of these 7372 entering students were accepted 
to the university they attend and to none of the other four. The stereotypical “students who apply to 
all five, get accepted to most” are a small minority. We would need more data to say more than that 
(where individuals apply, how many apply early admission, how students decide between multiple 
offers, how admissions criteria vary from place to place, etc.) So let’s move to an imaginary (and 
perhaps not terribly similar) universe where the analysis is simpler. Then we’ll do a little math. 

In Fancy College Country there are exactly five elite universities and 40,000 elite applicants. All 
40,000 applicants apply to all five universities. The intrinsic strength of an applicant’s case is a 
normal random variable X with mean 0 and variance 1. When a university reads the application, the 
university assigns it a score S = X + Y where Y is an independent normal random variable with mean 
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0 and variance 1. Think of X as the college-independent part of an application’s strength and Y as 
the college-dependent part (perhaps reflecting the resonance of the student’s background with 
university-specific goals, as well as the random mood of the admission team). Each student has one 
value X but gets an independent Y value for each university. Each university admits all applicants 
with scores above the 95th percentile in score distribution. Since S has variance 2, this means they √ √ 
admit students whose scores exceed C = Φ−1(.95) · 2 ≈ 1.6449 · 2 ≈ 2.326 where R a −x Φ(a) = (2π)−1/2 e 

2/2dx. To be admitted a student’s score must exceed 2.326. Each university −∞ 
expects to admit 5 percent of its applicants. 

(a) Compute, as a function of x, the conditional probability that the student is admitted to the first 
university in the list, given that the student’s X value is x. In other words, compute the 
probability that Y > C − x. 

(b) How large does X have to be for this conditional probability to exceed .05? How about .95? 
Find the probability that X exceeds the former threshold. And the latter. (Give numerical 
answers. Note the discrepancy: given their X values, many students have a .05 chance, but very 
few have a .95 chance. It is easier to be a contender than a sure thing.) 

(c) Let A(x) be the conditional probability that the student is admitted to at least one university on 
the list, given that the student’s X value is x. Compute A(x) using Φ and C as defined above. 

(d) Argue that the overall probability that a student is admitted to at least one university is given R ∞ √ 
by (1/ 2π)e−x

2/2A(x)dx and that the chance to be rejected by all universities is −∞ R ∞ √ −x (1/ 2π)e 
2/2(1 − A(x))dx. −∞ 

(e) Try to compute (d) numerically in a package like wolframalpha and report how it goes. You 
might (I did) have to fiddle a bit to get it to work. Here’s how I did it: 

1. To see how wolframalpha represents Φ(x) type in 

Integrate[(1/Sqrt[2Pi]) E^(-y^2/2), {y,-Infinity, x}] 

You get some expression involving erf, which is a close relative of Φ. 

2. Click on that to get plaintext. Replace x with (2.326 − x) to get 

1/2 (1+erf((2.326-x)/sqrt(2))) 

3. Put parentheses about this and raise it to fifth power (to get a wolframalpha friendly 
expression for conditional chance to be rejected everywhere, given x), multiply by fX (x) 
and integrate: 

Integrate[(1/sqrt(2Pi)) E^(-x^2/2) 

(1/2 (1+erf((2.326-x)/sqrt(2))))^5, {x,-Infinity, Infinity}] 

(f) Briefly justify the following conclusions. Each student has a 0.166363 chance to be accepted at 
least somewhere. The expected number of students admitted to at least one university is about 
6655. The expected class sizes are about 1331 at each school, and each university has a typical 
yield rate of about .67. 
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Remark: If admission were completely random (each university takes a student with probability .05 
independently of X) then the applicants would have a 1 − (.95)5 ≈ .2262 chance to get accepted to at 
least one university. We’d expect to see .2262 · 40000 ≈ 9048 students admited to at least one 
university, and the yield rate for each university would be roughly .9048. If the selection process were 
completely determined by X (so that all universities accept exactly the same 2000 students) then 
there would be only 2000 students admitted to at least one university and the yield rate would be .2 
(with class sizes of only 400). Our .67 lies between these extremes. 

Remark: If some applicants applied to fewer than 5 universities (e.g., due to early admissions) yield 
rates might be higher, since fewer admits would have multiple offers. If the variance of Y were 
smaller, yields might be lower due to greater admission list overlap. If some admits chose not to 
attend one of the 5 schools, that would also decrease yields. 

F. The following is one formulation of a famous “two envelope” paradox. Jill is a money-loving 
individual who, given two options, invariably chooses the one that gives her the most money in 
expectation. One day Harry, a trusted (and capable of delivering) individual, offers her the following 
deal as a gift. He will secretely toss a fair coin until the first time that it comes up tails. If there are n 
heads before the first tails, he will place 10n dollars in one envelope and 10n+1 dollars in the second 
envelope. (Thus, the probability that one envelope has 10n dollars and the other has 10n+1 dollars is 
2−n−1 for n ≥ 0.) Harry will then hand Jill the pair of envelopes (randomly ordered, indistinguishable 
from the outside) and invite her to choose one. After Jill chooses an envelope she will be allowed to 
open it. Once she does, she will be allowed to either keep the money in the first envelope or switch to 
the second envelope and keep whatever is in the second envelope. However, if she decides to switch, 
she has to pay a one dollar “switching fee.” 

1. If Jill finds 100 dollars in the first envelope she opens, what is the conditional probability that 
the other envelope contains 1000 dollars? What is the conditional probability that the other 
envelope contains 10 dollars? 

2. If Jill finds 100 dollars in the first envelope she opens, how much money does Jill expect to win 
from the game if she does not switch envelopes? (Answer: 100 dollars.) How much does she 
expect to win (net, after the switching fee) if she does switch envelopes? 

3. Generalize the answers above to the case that the first envelope contains 10n dollars (for n ≥ 0) 
instead of 100. 

4. Jill concludes from the above that, no matter what she finds in the first envelope, she will 
expect to earn more money if she switches envelopes and pays the one dollar switching fee. This 
strikes Jill as a bit odd. If she knows she will always switch envelopes, why doesn’t she just take 
the second envelope first and avoid the envelope switching fee? How can she be maximizing her 
expected wealth if she spends an unnecessary “switching fee” dollar no matter what? How does 
one resolve this apparent paradox? (Use the hints in the Lecture 24 slides as needed. Even with 
hints, it may take time to make peace with this problem.) 
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