
   

              
             

                 
  

Poisson 

18.600 Problem Set 5 

Welcome to your fifth 18.600 problem set! We’ll be thinking more about Poisson random 
variables and the corresponding processes. Food for thought: should we replace the expression 
“Bad things happen in threes” with “When one bad thing is expected, the chance of exactly three 
is 1/6e”? 

A. FROM TEXTBOOK CHAPTER FOUR: 
1. Theoretical Exercise 25: Suppose that the number of events that occur in a specified time is 

a Poisson random variable with parameter λ. If each event is “counted” with probability p, 
independently of every other event, show that the number of events that are counted is a 
Poisson random variable with parameter λp. Also, give an intuitive argument as to why this 
should be so. As an application of the preceding result, suppose that the number of distinct 
uranium deposits in a given area is a Poisson random variable with parameter λ = 10. If, in 

1 a fixed period of time, each deposit is discovered independently with probability 50 , find the 
probability that (a) exactly 1, (b) at least 1, and (c) at most 1 deposit is discovered during 
that time. 

B. ANSWER THE FOLLOWING: 

1. Let X be uniform on [0, 1] and compute the expectation and variance of Xn where n is a 
positive integer. 

2. Let X be uniform on [0, 1] and compute the probability density function of Y = X3 . 

C. In Regular Bus City, there is a shuttle bus that goes between Stop A and Stop B, with no 
stops in between. The bus is perfectly punctual and arrives at Stop A at precise five minute 
intervals (6:00, 6:05, 6:10, 6:15, etc.) day and night, at which point it immediately picks up all 
passengers waiting. Citizens of Regular Bus City arrive at Stop A at Poisson random times, with 
an average of 5 passengers arriving every minute, and board the next bus that arrives. 

(a) Suppose that you visit this city and that you arrive at Stop A at a time chosen uniformly at 
random from the times in a day. How long do you expect to have to wait until the next bus? 

(b) How many citizens of Regular Bus City do you expect to be on the bus that you take? 

In Poisson Bus City, there is a shuttle bus that goes between Stop A and Stop B, with no stops in 
between. The times at which the bus arrives at Stop A are a Poisson point process with one bus 
arriving every five minutes on average, day and night, at which point it immediately picks up all 
passengers waiting. Citizens of Poisson Bus City (like those of Regular Bus City) arrive at Stop 
A at Poisson random times, with an average of 5 passengers arriving every minute, and board the 
next bus that arrives. 

(c) Suppose that you visit this city and that you arrive at Stop A at a time chosen uniformly at 
random from the times in a day. How long do you expect to have to wait until the next bus? 
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(d) How many citizens of Poisson Bus City do you expect to be on the bus that you take? 

(e) Are the following two statements true or false? If they are both true, explain in words the 
apparent discrepancy: 

(i) When you visit, buses in Poisson Bus City seem on average to come twice as slowly 
and to be twice as crowded as those in Regular Bus City 

(ii) In both cities, buses come on average every five minutes and people come on average 
five times per minutes, so that over the long haul there are 25 people per bus on 
average—so buses are on average equally crowded in the two cities. 

Remark: Poisson Bus City is not the worst case scenario. Suppose that buses come in pairs (one 
right behind the other) with the pairs arriving as a Poisson point process with one pair every 10 
minutes on average. And suppose that whenever this happens, everybody gets in the first bus 
and leaves the second bus empty. Now if you arrive at a random time, you can expect your bus to 
take four times as long to come and be four times as crowded as in Regular Bus City (assuming 
that like others you get on the first bus in a pair). On a real life bus route with many stops, the 
closer a bus is to the bus ahead of it, the faster it can go (since it is picking up fewer passengers) 
which can lead to this kind of clumping. 

D. Each day (independently of all other days) Jill has a 1/2500 chance of hearing a particular 
fact: let’s say the fact that Henry Mancini composed “The Pink Panther Theme.” Jill stores 
something in long term memory after hearing it 3 times. Use Poisson approximations to 
(approximately) answer the following: 

(a) What is the probability that, by the time Jill is 10,000 days old, she knows that Henry 
Mancini wrote “The Pink Panther Theme”? 

Alice reads more than Jill and has a better memory for trivia. Each day (independently of all 
others) Alice has a 1/1000 chance of learning that Henry Mancini wrote “The Pink Panther 
Theme,” and she stores information in long term memory after hearing it twice. 

(b) What is the probability that, by the time Alice is 10,000 days old, she knows that Henry 
Mancini wrote “The Pink Panther Theme”? 

(c) If there are 10, 000 similar facts (each fact comes with same probabilities as above), how 
many of them do we expect that Jill knows but Alice doesn’t (assuming that both are 
10,000 days old)? Assume that for each given fact, the two Poisson random variables 
(number of times fact is heard by Alice and by Jill) are independent. (If the answer is 
small, then Jill should feel pretty lucky when one of these facts comes up while she is 
watching Jeopardy with Alice.) 

E. This problem addresses the Gompertz model for the duration of human life. But it starts out 
as another story about buses. Let X1, X2, X3 be a Poisson point process of parameter 1 on 
[0, ∞). Recall that this implies that X1 and X2 − X1 and X3 − X2, etc., are i.i.d. exponential 
random variables each with parameter 1. Now for each integer i ≥ 1, let Yi = log Xi. In Poisson 
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Bus City, you might imagine that a bus line starts operating at time zero, and thereafter bus 
arrivals correspond to the times Xi. 

On Accelerating Frequency Planet (AFP) the bus arrival times are Y1, Y2, . . .. That is, each 
arrivial time is the natural logarithm of a point in the Poisson point process. Time is measured 
from −∞ to ∞ on AFP, so it is possible that some bus arrival times are negative. 

(a) Show that, on AFP, given any constants a < b, the number of buses that arrive between R b 
times a and b is a Poisson random variable with parameter exdx. a 

(b) Explain (with a sentence each) why the following things are true: the number of buses that 
arrive during the time interval (−∞, 0] is Poisson with parameter 1, while with probability 
one infinitely many buses arrive after time 0. If α = ln 2 ≈ .7, then for each k the expected 
number of buses that arrive during [kα, (k + 1)α] is twice as large as the the expected 
number that arrive during [(k − 1)α, kα]. (In other words, the doubling time for the bus 
arrival-frequency rate is α.) Moreover, the first bus’s arrival time is a random variable � � 
whose median is ln ln(2) ≈ −.37. 

Note you can approximate an ordinary Poisson point process with parameter λ by partitioning 
time into disjoint intervals of the form [t, t + �) for small � and asserting that each interval 
independently contains a bus with probability λ�. Things are similar on AFP, except that the 
probability is approximately et� when � is small; in some sense, this is like saying that the Poisson 

t parameter λ is “time dependent” (and exponentially increasing) with λ(t) = e . 

More to the story: at time −7 on AFP, an adorable but immobile sloth is born at the bus stop, 
where it lives until it is killed by the first bus that arrives. Since it is unlikely the first bus comes 
before time −7, (b) suggests that the sloth’s life span is a random variable with median about 
7 − .37 ≈ 6.63. The standard unit of time on AFP is the duodecennium (i.e., twelve years), so 
that α “units” means 12α ≈ 8.32 years and the sloth’s median life span is 6.63 ∗ 12 ≈ 80 years. 

(c) Suppose that on AFP, half of the buses have fat tires and half have thin tires (bus type 
decided by independent coin toss for each bus), and female sloths are only killed by fat tired 
buses, while males are killed by all buses. Argue that if the sloth is female, its life 
expectancy is about 8.32 years (i.e., α duodecennia) longer than if it had been male. (Hint: 
use problem A.1 and argue that the probability density function for the lifespan of a female 
born at time −7 agrees with that of a male born at time −7 − α. Then note that having a 
bus between time −7 − α and −7 is very unlikely.) 

(d) Let pk be the probability that the sloth dies during its kth year of life, given that it has 
survived for (k − 1) years. Argue that pk is approximately the expected number of buses 
that arrive during that kth year when pk is small — say, less than .1. (This is related to 
arguing that the probability that a λ Poisson random variable equals 1 is approximately λ 
when λ is reasonably small.) Thus pk grows (roughly) exponentially in k for the first 80 or 
so years of life. 
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(e) Look up https://www.ssa.gov/oact/STATS/table4c6.html and 
https://en.wikipedia.org/wiki/Gompertz%E2%80%93Makeham_law_of_mortality and 
(after looking them over for five minutes) write a sentence or two about what you noticed 
— and in particular about how closely the pk corresponding to humans match those of the 
sloths on AFP. (Three obvious differences: humans are much more likely than AFP sloths 
to die during the first year or so of life. Humans in late teens and twenties — especially 
males — die at a rate that is higher than the Gompertz law would predict, hence the 
“bump” in the otherwise nearly straight line on the Wikipedia chart. This may be in part 
be due to risky behaviors, which are either more pronounced among people that age or 
simply make a larger difference on the log scale because other causes of death are low. 
Finally, outside the “bump” period the gap betwen death rates for male and female humans 
is large but not as large as for AFP sloths.) You may find it helpful to consult 
https://gravityandlevity.wordpress.com/2009/07/08/your-body-wasnt-built-to-

last-a-lesson-from-human-mortality-rates/ for a somewhat breezier account of the 
Gompertz law story. (Notice also that this problem has another part after the next few 
remarks.) 

Remark: Gompertz law (i.e., exponential mortality rate growth) appears to apply pretty well to 
both humans and animals (with a species dependent doubling rate α). Google Gompertz morality 
and find out more. If you wanted a story to explain the exponential growth, one naive one would 
be that “glitches” in the body accumulate exponentially, and your death rate is proportional to 
the number of glitches. Another simplistic story is that if there is a genetic mutation that causes 
an organism to die at age X, then the rate at which natural selection eliminates that gene 
decreases with the proportion of organisms who reach age X. So mutations that cause 
functioning to break down in old people accumulate faster than those that affect young people. 
Note also that although Gompertz law holds pretty well in developed nations, it does not hold in 
settings where a large fraction of deaths are caused by predators, wars, infectious diseases, etc. 
that are as deadly to the young as the old. 
Remark: The assumption of an exponential increase in “bus arrival frequency” suggests that an 
unhealthy habit that doubles your probability of dying within any given year should subtract 
about α units of life expectancy (one doubling period). Medical advances that eliminate half the 
number of fatal buses should add about α units of life expectancy. If medicine eliminated 7/8 of 
the buses, this should increase life expectancy by 3α units, about 25 years. Lifestyle choices that 
decrease the death rate by 29 percent (i.e., which multiply death rate during any given year by √ 
1/ 2) should add about α/2 units (about four years) to life expectancy (since your death rate 
each year is what it would be if you were 4 years younger). 

Remark: Life expectancy is computed by estimating what fraction of people of each numerical 
age die each year, and then calculating how long newborns would expect to live if they died with 
the corresponding probablity each year. Per discussion above, doubling the death rate each year 
should roughly correspond to subtracting eight years of life expectancy. Decreasing the death rate 
by 29 percent roughly corresponds to adding four years of life expectancy. US life expectancy per 
https://en.wikipedia.org/wiki/List_of_countries_by_life_expectancy is 79.3 years. 
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Countries with life expectancy 8 years lower include Guatamela, Bangladesh, and Ukraine. 
Countries with life expectancy 4 years higher include Japan, Switzerland, and Singapore. Factors 
presumably include opioids, guns, cigarettes, obesity, alcoholism, pollution, diet, disease, etc. 

Remark: In a world where Gompertz applies precisely with a doubling period of 8 years (and 
people’s life spans are independent of each other), if you have 8 = 23 students of age 20 and one 
professor of age 44 = 20 + 3 × 8, then the time until the first student dies should agree in law 
with the time until the professor dies. Essentially, being three doubling periods older means you 
expect eight times as many buses coming your way. But being eight people instead of one means 
that (as a group) you also have eight times as many buses coming your way. (If you want to 
extend the bus metaphor, imagine a different independent lane of buses for each person, with 
frequency rates depending on that person’s age...) If you have a class of 128 students of age 20 
and one older professor of age 76, then the time until the first student dies agrees in law with the 
time until the professor dies. If two parents are 24 years older than a child then, of the buses 
coming towards these three people, 1/17 are coming toward the child and 8/17 are coming toward 
each parent (since each parent has 8 times as many buses coming its way as the child). In fact, 
one can show that given the arrival times of the buses, we can assign each bus independently to 
one of the three people, with probabilities 8/17 for each parent and 1/17 for child. Looking at the 
first bus, we find that the probability that the child is the first of the three people to die is 1/17. 

(f) Suppose that, in the world of the previous remark, there are four siblings of ages 20, 28, 28, 
and 36. What is the probability the oldest one dies first? 

Remark: Per CDC, smoking roughly triples mortality https://www.cdc.gov/tobacco/data_ 
statistics/fact_sheets/health_effects/tobacco_related_mortality/index.htm and 
reduces life expectancy by over a decade. If this were true exactly (on our purely Gompertz 
8-year-doubling world) then a smoker’s death rate would be the same as that of a non-smoker 
who was 8 · log2(3) ≈ 12.67 years older. If there were two young people of the same age (one 
smoker, one not) the non-smoker could say “You should not smoke. You are shortening your life 
by 12 years,” and the smoker could counter “Yes, but don’t be too sanguine about your own life 
span. There is still a 1/4 chance that I will outlive you.” The point is that for both individuals 
the uncertainty is quite high. Thinking back to our original model, if X is a rate one exponential 
and Y = 12(7 + log X), then SD(Y ) = 12SD(log X) which comes out to about 15 on 
wolframalpha. This is consistent with https://www.nber.org/papers/w14093, which states that 
the standard deviation of adult lifespan in the US is about 15 years. As the linked paper notes, 
this uncertainty makes it hard to plan for things like retirement and inheritance. C’est la vie. 

Remark: To drastically increase human life span (so we live to 150, say) we’ll have to change α 
— i.e., to slow the exponential growth of the mortality rate. How can we do this? Can we freeze 
blood and tissue from when we’re younger and reintroduce it later? Can we reset age markers? 
Can we manually edit the genes that cause aging? Somebody in this class should figure this out. 
We have a lot of buses coming our way. (Google naked mole rat Gompertz for inspiration.) 
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