
 
   

               
    

         

         

Conditional probability 
18.600 Problem Set 3 

Welcome to your third 18.600 problem set! Conditional probability is defined by P (A|B) = 
P (AB)/P (B), which implies 

P (B)P (A|B) = P (AB) = P (A)P (B|A), 

and dividing both sides by P (B) gives Bayes’ rule: 

P (B|A) 
P (A|B) = P (A) , 

P (B) 

which we may view as either a boring tautology or (after spending a few hours online reading about 
Bayesian epistemology, Bayesian statistics, etc.) the universal recipe for revising a worldview in response 
to new information. Bayes’ rule relates P (A) (our Bayesian prior) to P (A|B) (our Bayesian posterior for 
A, once B is given). If we embrace the idea that our brains have subjective probabilities for everything 
(existence of aliens, next year’s interest rates, Sunday’s football scores) we can imagine that our minds 
continually use Bayes’ rule to update these numbers. Or least that they would if we were clever enough 
to process all the data coming our way. 

By way of illustration, here’s a fanciful example. Imagine that in a certain world, a normal person 
says 105 things per year, each of which has a 10−5 chance (independently of all others) of being truly 
horrible. A truly horrible person says 105 things, each of which has a 10−2 chance (independently of all 
others) of being truly horrible. Ten percent of the people in this world are truly horrible. Suppose we 
meet someone on the bus and the first thing that person says is truly horrible. Using Bayes’ rule, we 
conclude that this is probably a truly horrible person. 

Then we turn on cable news and see an unfamiliar politician saying something truly horrible. Now 
we’re less confident. We don’t know how the quote was selected. Perhaps the politician has made 105 

recorded statements and we are seeing the only truly horrible one. So we make the quote selection 
mechanism part of our sample space and do a more complex calculation. 

The problem of selectively released information appears in many contexts. For example, lawyers 
select evidence to influence how judges and jurors calculate conditional probability given that evidence. 
If I’m trying to convince you that a number you don’t know (but which I know to be 49) is prime, I 
could give you some selective information about the number without telling you exactly what it is (it’s 
a positive integer, not a multiple of 2 or 3 or 5, less than 50) and if you don’t consider my motives, 
you’ll say “It’s probably prime.” 

Note also that legal systems around the world designate various “burdens of proof” including probable 
cause, reasonable suspicion, reasonable doubt, beyond a shadow of a doubt, clear and convincing evidence, 
some credible evidence, and reasonable to believe. Usually, these terms lack clear meaning as numerical 
probabilities (does “beyond reasonable doubt” mean with probability at least .95, or at least .99, 
or something else?) but there is an exception: preponderance of evidence generally indicates that a 
probability is greater than fifty percent, so that something can be said to be “more likely than not.” 

1 



An interesting question (which I am not qualified to answer) is whether numerical probabilities should 
be assigned to the other terms as well. 

A. FROM TEXTBOOK CHAPTER THREE: 

1. Problem 47: An urn contains 5 white and 10 black balls. A fair die is rolled and that number of 
balls is randomly chosen from the urn. What is the probability that all of the balls selected are 
white? What is the conditional probability that the die landed on 3 if all the balls selected are 
white? 

B. A medical practice uses a “rapid influenza diagonistic test” to get a quick (under 30 minute) 
assessment of whether a patient has the flu. The sensitivity of the test (i.e., the fraction of the time 
it returns a positive result if the patient has the disease) is .5 while the specificity (i.e., the fraction 
of the time it returns a negative result if the person does not have the flu) is .9. In other words, 
people without the flu are relatively unlikely (10 percent chance) to get a false positive, but people 
with the flu have a larger chance (50 percent) to get a false negative (e.g., because the particular 
strain of flu isn’t picked up by the test, or virus somehow didn’t make it onto the swab). 

Suppose that based on time of year and symptoms (fever, chills, cough, etc.) the doctor thinks a 
priori that the event F that a patient has the flu with probability P (F ) = .7. Assume further that the 
doctor believes that the specificity/sensitivity results mentioned above apply to this individual (given 
what is known), so that if T is the event that the test comes back positive, we have P (T |F ) = .5 and 
P (T |F c) = .1. After the doctor administers the test and discovers that the test is negative, what is 
the doctor’s a posteriori estimate of the probability that the patient has the flu? In other words, what 
is P (F |T c)? What is P (F |T )? Give approximate percentages. 

Remark: Google RIDT specificity and sensitivity to see actual estimates of these values (which vary 
with the study, the type of test, the flu strains prevalent in a given year, etc.) One practical decision a 
doctor might make is whether to prescribe an antiviral medication (like Tamiflu) that is thought to 
reduce symptom duration by about one day on average if a person has the flu, and zero days 
otherwise. (By comparison, a flu vaccine that reduces the risk of a 10-symptom-day flu during a 
season from 20 percent to 10 percent would also decrease the expected number of symptom days by 
one. Google Tamiflu effectivness and flu vaccine effectiveness for actual data on such things, which 
apparently vary quite a lot from year to year and place to place.) One might guess that if a person 
has a p chance of having the flu, then taking the drug decreases the expected number of symptom 
days by p (one day on average if flu is really there, zero otherwise). If p is below some threshold the 
doctor and patient may conclude that the cost (time it takes to fill prescription, price of drug, small 
side effect risk) just isn’t worth it. (Another hard-to-measure consideration: how much do 
vaccines/antivirals decrease the risk of infecting others?) 

C. Suppose that a fair coin is tossed infinitely many times, independently. Let Xi denote the outcome 
of the ith coin toss (an element of {H, T }). Compute: 
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1. the conditional probability that exactly 7 of the first ten tosses are heads given that exactly 9 of 
the first 20 tosses are heads. 

2. the probability that there exists an infinite arithmetic progression such that Xi = H for all i in 
that arithmetic progression. In other words, there exist positive integers a and b such Xi = H 
whenever i ∈ {a, a + b, a + 2b, a + 3b, a + 4b, . . .}. (Hint: use the countably additivity axiom.) 

3. the probability that the pattern HHTTHTTHT appears at least once in the sequence 
X1, X2, X3, . . . 

4. the probability that every finite-length pattern appears infinitely many times in the sequence 
X1, X2, X3, . . . 

D. On Interrogation Planet, there are 730 suspects, and it is known that exactly one of them is guilty 
of a crime. It is also known that any time you ask a guilty person a question, that person will give a 
“suspicious-sounding” answer with probability .9 and a “normal-sounding” answer with probability .1. 
Similarly, any time you ask an innocent person a question, that person will give a suspicious-sounding 
answer with probability .1 and a normal-sounding answer with probability .9. (And these probabilities 
apply regardless of how the suspect has answered questions in the past; in other words, once a person’s 
guilt or innocence is fixed, that person’s answers are independent from one question to the next.) 

Interrogators pick a suspect at random (all 730 people being equally likely) and ask that person nine 
questions. The first three answers sound normal but the next six answers all sound suspicious. The 
interrogators say “Wow, six suspicious answers in a row. Only a one in a million chance we’d see that 
from an innocent person. This person is obviously guilty.” But you want to do some more thinking. 
Given the answers thus far, compute the conditional probability that the suspect is guilty. Give an 
exact numerical answer. 

E. Suppose that the quantities P [A|X1], P [A|X2], . . . , P [A|Xk] are all equal. Check that P [Xi|A] is 
proportional to P [Xi]. In other words, check that the ratio P [Xi|A]/P [Xi] does not depend on i. 
(This requires no assumptions about whether the Xi are mutually exclusive.) 

Remark: This can be viewed as a mathematical version of Occam’s razor. We view A as an 
“observed” event and each Xi as an event that might “explain” A. What we showed is that if each Xi 

“explains” A equally well (i.e., P (A|Xi) doesn’t depend on i) then the conditional probability of Xi 

given A is proportional to how likely Xi was a a priori. For example, suppose A is the event that 
there are certain noises in my attice, X1 is the event that there are squirrels there, and X2 is the event 
that there are noisy ghosts. I might say that P (X1|A) >> P (X2|A) because P (X1) >> P (X2). Note 
that after looking up online definitions of “Occam’s razor” you might conclude that it refers to the 
above tautology plus the common sense rule of thumb that P (X1) > P (X2) when X1 is “simpler” 
than X2 or “requires fewer assumptions.” 
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F. On Cautious Science Planet, science is done as follows. First, a team of wise and well informed 
experts concocts a hypothesis. Experience suggests the hypotheses produced this way are correct 
ninety percent of the time, so we write P (H) = .9 where H is the event that the hypothesis is true. 
Before releasing these hypotheses to the public, scientists do an additional experimental test (such as 
a clinical trial or a lab study). They decide in advance what constitutes a “positive” outcome to the 
experiment. Let T be the event that the positive outcome occurs. The test is constructed so that 
P (T |H) = .95 but P (T |Hc) = .05. The result is only announced to the public if the test is positive. 
(Sometimes the test involves checking whether an empirically observed quantity is “statistically 
significant.” The quantity P (T |H) is sometimes called the power of the test.) 

(a) Compute P (H|T ). This tells us what fraction of published findings we expect to be correct. 

(b) On Cautious Science Planet, results have to be replicated before they are used in practice. If the 
first test is positive, a second test is done. Write T̃  for the event that the second test is positive, 
and assume the second test is like the first test, so that P (T̃ |HT ) = .95 but P (T̃ |HcT ) = .05. 
Compute the reproducibility rate P (T̃ |T ). 

(c) Compute P (H|T T̃ ). This tells us how reliable the replicated results are. (Pretty reliable, it 
turns out—your answer should be close to 1.) 

On Speculative Science Planet, science is done as follows. First creative experts think of a hypothesis 
that would be rather surprising and interesting if true. These hypotheses are correct only five percent 
of the time, so we write P (H) = .05. Then they conduct a test. This time P (T |H) = .8 (lower power) 
but again P (T |Hc) = .05. Using these new parameters: 

(d) Compute P (H|T ). 

(e) Compute the reproducibility rate P (T̃ |T ). Assume the second test is like the first test, so that 
P (T̃ |HT ) = .8 but P (T̃ |HcT ) = .05. 

Remark: If you google Nosek reproducibility you can learn about one attempt to systematically 
reproduce 100 psychology studies, which succeeded a bit less than 40 perent of the time. Note that 
P (T̃ |T ) ≈ .4 is (for better or worse) closer to Speculative Science Planet than Cautious Science 
Planet. The possibility that P (H|T ) < 1/2 for real world science was famously discussed in a paper 
called Why Most Published Research Findings Are False by Ioannidis in 2005. A more recent mass 
replication attempt (involving just Science and Nature) allowed scientists to bet on whether a study 
would be replicated and found that to some extent scientists were good at predicting such things. See 
https://www.nature.com/articles/d41586-018-06075-z. 

Questions for thought: What are the pros and cons of the two planets? Is it necessarily bad for 
P (T̃ |T ) and P (H|T ) to be low in some contexts (assuming that people know this and don’t put too 
much trust in single studies)? Do we need to do larger and more careful studies? What improvements 
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can be made in fields like medicine, where controlled clinical data is sparse and expensive but life and 
death decisions have to be made nonetheless? And I do mean expensive. The cost of recruiting and 
pre-screening a single Alzheimer’s patient for trial is $100,000, per this article 
https://www.nytimes.com/2018/07/23/health/alzheimers-treatments-trials.html 
These questions go well beyond the scope of this course, but we will say a bit more about the tradeoffs 
involved when we study the central limit theorem. 

G. Doomsday: Many people think it is likely that intelligent alien civilizations exist somewhere 
(though perhaps so far separated from us in space in time that we will never encounter them). When 
a species becomes roughly as advanced and intelligent as our own, how long does it typically survive 
before extinction? A few thousand years? A few millions years? A few billion years? Closely related 
question: how many members of such a species typically get to exist before it goes extinct? 

Let’s consider a related problem. Suppose that one factory has produced a million baseball cards in 
10,000 batches of 100. Each batch is numbered from 1 to 100. Another factory has produced a million 
baseball card in 1,000 batches of 1,000, each batch numbered from 1 to 1,000. A third factory 
produced a million baseball card in 100 batches of 10,000, with each batch numbered from one to 
10,000. You chance upon a baseball card from one of these three factories, and a priori you think it is 
equally likely to come from each of the three factories. Then you notice that the number on it is 74. 

(a) Given the number you have seen, what is the conditional probability that the card comes from 
the first factory? The second? The third? 

Now consider the following as a variant of the card problem. Suppose that one universe contains 1050 

intelligent beings, grouped into civilizations of size 1012 each. Another universe contains 1050 

intelligent beings, grouped into civiliations of size 1015 each. A final universe contains 1050 intelligent 
beings, grouped into civilizations of size 1018 each. You pick a random one of these 3 × 1050 beings 
and learn that before this being was born, exactly 141, 452, 234, 521 other beings were born in its 
civilization. 

(b) What is the conditional probability that the being comes from the first universe? 

Remark: The doomsday argument (google it) is that it is relatively likely that human civilization will 
disappear within thousands of years — as opposed to lasting millions of years — for the following 
reason: if advanced civilizations typically lasted for millions of years (with perhaps 10 billion beings 
born per century), then it would seem coincidental for us to find ourselves among the first few 
thousand. People disagree on what to make of this argument (what the Bayesian prior on civilization 
length should be, what to do with all the other information we have about our world, what measure to 
put on the set of alternative universes, etc.) Maybe the argument at least makes people think about 
the possibility of near-term human extinction, and whether preparing for apocalyptic scenarios (giant 
asteroids, incurable plagues, nuclear war, climate disaster, supervolcanos, resource depletion, the next 
ice age, etc.) might improve our chance of surviving a few thousand (or million or billion) more years. 
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