
1 Introduction

Recall from last time our definitions of randomized communication complexity: we define Rε(f),
pubRε (f) to be the complexity of randomized protocols which correct correctly compute f with

probability at least 1− ε, with either private (Alice and Bob each have independent sources of ran-
domness) or public randomness (Alice and Bob have access to a shared random string), respectively.
Randomness is free, and does not contribute to the cost of the protocol.

2 Public versus private randomness in communication

Recall that private randomness can easily be simulated by private randomness, by splitting the
publicly random bits between Alice and Bob. Moreover, we saw that R(EQn) = O(log n), but
Rpub(EQn) = O(1), so public randomness can be stronger than private randomness. In this lecture,
we show that private randomness is nearly as strong as public randomness.

Theorem 1 (Newmann). For all f : X × Y → {0, 1},

Rε+δ(f) ≤ Rpubε (f) +O(log n+ log 1/δ) .

In other words, we can make randomness private at the small, additive logarithmic cost and a small
error (which can be boosted to only ε for a small constant factor).

Proof. Consider a public-randomness protocol P such that f(x, y) = P(x, y, r) with high prob-
ability, and let π denote the set of all strings of randomness r. We would like to construct a
private-randomness protocol to solve f .

If we knew that |π| ≤ poly(n)poly(1/δ) ⇐⇒ |r| = O(log n + log 1/δ), then we are done by trivial
simulation, as Alice can generate private random bits and send them to Bob.

This motivates a reduction approach: in general, we will show that there exists an “equivalent”
(up to an error of δ) protocol P ′ which has smaller randomness complexity |π′| ≤ poly(n)poly(1/δ).

Let r1, r2, . . . , rt be t elements of π selected independently at random (with replacement). For each
such choice, P induces an alternative protocol P ′ = Pr1,...,rt : P ′ runs P, except it samples from
{r1, . . . , rt} instead of from π. Note that |π′| = t. We now show that, with high probability over
our choice of the ri, P ′ makes not much error.

Let Z(x, y, r) = 1 if P makes error on input (x, y) and random string r. By definition, for all (x, y),
Er π[Z(x, y, r)]∼ ≤ ε. Thus, by Chernoff, for all (x, y),
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Thus, if t ≥ n+1 ln
δ2

2, by a union bound,
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so there must exist some choice of r1, . . . rt such that, for all (x, y), P ′ fails with probability at most
ε+ δ.

Now, π′ has only t = O(n/δ2) = poly(n)poly(1/δ) different random strings, so we can sample from
it using O(log n+ log 1/δ) bits of randomness. Thus, we can simulate P ′ with private randomness
using only O(log n+ log 1/δ) extra bits of communication.

3 Lower bounds on randomized communication complexity

We now try to prove some lower bounds on actual problems. In particular, we will show the inner
product problem is not in BPPcc.

We first define a different sense of randomized communication complexity.

Definition 2 (Distributional communication complexity). Let µ be a probability distribution on
X × µY . The (µ, ε)-distributional communication complexity of f , denote Dε (f) is the cost of the
best deterministic protocol with error ≤ ε with inputs weighted according to distribution µ.

pub µClaim 3. Rε (f) ≥ maxµDε (f).

pubProof. Consider a protocol P for Rε (f). Now, by the guarantees of the randomized protocol,

∀(x, y) : E [P(x, y, r) 6= f(x, y)]
r∼D

≤ ε ,

so
E [P(x, y, r) 6= f(x, y)]

(x,y)∼µ,r∼D
≤ ε .

Thus, there exists r such that

E [P(x, y, r) x,
x,y)∼µ

6= f( y)]
(

≤ ε

so we can “fix our randomness” to form a deterministic algorithm.

pub µTheorem 4. In fact, this is an equality: Rε (f) = maxµDε (f).

Proof idea. This is solved by the minimax theorem or LP duality.

In analyzing deterministic communication complexity, we analyzed partitions into monochromatic
rectangles. Now, we want to consider partitions into “almost” monochromatic rectangles. We now
define a way to measure this.
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Definition 5 (Discrepancy). Let f : X × Y → {0, 1}. Then, the discrepancy of a rectangle R is

Disc 1 1
µ(f,R) = µ(R ∩ f− (0))− µ(R ∩ f− (1))

and the discrepancy of the function is

∣∣ ∣∣

Discµ(f) = max Discµ(f,R) .
R=S×T

Note that higher discrepancy means that a rectangle is “bigger” and “more monochromatic”, so
higher discrepancy is better.

µProposition 6. Dε (f) ≥ log 1−2ε
Discµ(f)

Proof. Consider P µa protocol for Dε (f). Then, we have

1− 2ε ≤ P[f(x, y) = P(x, y)]− P[f(x, y)
µ µ

6= P(x, y)]

Let {R1, R2, . . . Rm} be the rectangles induces by P. Then,

m

1− 2ε ≤
∑

P[f(x, y) = P(x, y)
µ

∧ (x, y) ∈ Rl]− P[f(x, y) 6=
µ

P(x, y) ∧ (x, y) ∈ Rl]
l=1

so there exists some R = Rl so that

1 ε
Discµ(f) ≥ Discµ(f,R

− 2
) ≥

m
=⇒ Dµε (f) ≥ logm ≥ log

1− 2ε

Discµ(f)
.

Thus, we have a way to bound randomized communication complexity with discrepancy through
distributional complexity. We are now ready to prove the main theorem.

Theorem 7. Consider IPn =
∑n

i=1 xiyi mod 2. Then, IPn ∈/ BPPcc. In particular, R(IPn) = Ω(n).

Proof. To apply our theorems now, we must pick a distribution µ to work on. In general, picking
µ is the art of proving bounds on randomized communication complexity.

In our case, the distribution is easy: let µ be uniform over {0, 1}n × {0, 1}n. We now show that
Discµ(IP n/

n) ≤ 2− 2 which suffices in our bounds on Rpub.

Now, let H(x, y) = (−1)〈x,y〉 = (−1)
∑
xiyi . Then,

Discµ(f) = max

∣∣∣∣ ∑∣∣ µ(x, y)H(x, y)
R

(x,y)∈R

∣∣∣∣∣∣ .

Let Hsml =

[
1 1

]
. Note that H, interpreted as a matrix, equals the tensor product H⊗n . The

1 −1 sml

eigenvalues of Hsml are
√
± 2, so ‖H‖ ≤ 2n/2. Here, ‖H‖ denotes the largest eigenvalue of H.
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Thus,

1
Discµ(f,R = S × T ) = H

22n
(

∑
(x, y)1S(x)1T (y)

x,y)

1
=

22n
(1S)T H (1T )

≤ 1
H

22n
‖ ‖

√
|S|
√
|T |

≤ 2n/2 · 2n/2 · 2n/2

22n

= 2−n/2

where 1S and 1T are the indicator vectors of S and T . Thus, we have

R(IPn) ≥ Rpub pub(IPn) = R 1
3

(IPn) ≥ Dµ1
3

(IPn) ≥ log
1

3 · 2−n/2
=
n

O
2
− (1) .

Thus, we have shown that IPn ∈/ BPPcc, which gives us a bound on randomized communication
complexity.
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