
Chapter 5

Synthetic-aperture radar

The object of synthetic aperture radar imaging (SAR) is to infer reflectivity
profiles from measurement of scattered electromagnetic waves. The word
“aperture” refers to the perceived angular resolution from the viewpoint of
the sensor (antenna). The expression “synthetic aperture” refers to the fact
that the aperture is created not from a very directional antenna, or array
of antennas (as in ultrasound), but results from a computational process of
triangulation, implicit in the handling of data with a backprojection formula.

The goal of the chapter is to gain an understanding of the geometry
underlying the operators F and F ∗ arising in SAR. Our reference for this
chapter is the book “Fundamentals of radar imaging” by Cheney and Borden.

5.1 Assumptions and vocabulary

We will make the following basic assumptions: (!)

1. Scalar fields obeying the wave equation, rather than vector fields obey-
ing Maxwell’s equation. This disregards polarization (though process-
ing polarization is a sometimes a simple process of addition of images.)
The reflectivity of the scatterers is then encoded via m(x) as usual,
rather than by specifying the shape of the boundary ∂Ω and the type
of boundary conditions for the exterior Maxwell problem.

2. The Born approximation, so that data d are proportional to εu1, and
u1 = Fm1. This disregards multiple scattering. In the sequel we will
write ε = 1 for simplicity.
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88 CHAPTER 5. SYNTHETIC-APERTURE RADAR

3. No dispersion, so that all waves travel at the same speed regardless of
frequency, as in the wave equation. Dispersion happens for radio waves
in the ionosphere.

4. The reflectivity m(x) = m0(x) + εm1(x) is constant in time, with m0

constant in time and space. This disregards moving scatterers. As
mentioned earlier, we put ε = 1. For convenience, we will also drop
the subscript 1 from m1, so that in this chapter, m stands for the
perturbation in squared slowness 1/c2.

A few other “working” assumptions are occasionally made for conve-
(!) nience, but can easily be removed if necessary:

5. The far field assumption: spherical wavefronts are assumed to be locally
planar, for waves at the scatterer originating from the antenna (or vice-
versa).

6. Monostatic SAR: the same antenna is used for transmission and re-
ception. It is not difficult to treat the bistatic/multistatic case where
different antennas play different roles.

7. Start-stop approximation: in the time it takes for the pulse to travel
back and forth from the antenna to the scatterers, the antenna is as-
sumed not to have moved.

8. Flat topography : the scatterers are located at elevation z = 0.

SAR typically operates with radio waves or microwaves, with wavelengths
on the order of meters to centimeters. Moving antennas are typically carried
by planes or satellites. A variant of SAR is to use arrays of fixed antennas,
a situation called MIMO (multiple input, multiple output.) If the frequency
band is of the form [ω0−∆ω/2, ω0 +∆ω/2], we say ω0 is the carrier frequency
and ∆ω is the bandwidth. We speak of wideband acquisition when ∆ω is a
large fraction of ω0. As usual, ω = 2πν where ν is in Hertz.

The direction parallel to the trajectory of the antenna is called along-
track. The vector from the antenna to the scatterer is called range vector,
its direction is the range direction, and the direction perpendicular to the
range direction is called cross-range. The distance from the antenna to the
scatterer is also called range. The length of the horizontal projection of the
range vector is the downrange.
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We will not deal with the very interesting topic of Doppler imaging, where
frequency shifts are used to infer velocities of scatterers. We will also not (!)
cover the important topic of interferometric SAR (InSAR) where the objec-
tive is to create difference images from time-lapse datasets.

We finish this section by describing the nature of the far-field approxima-
tion in more details, and its consequence for the expression of the Green’s
function eik|x−y|

| − | . Consider an antenna located near the origin. We will as-
4π x y

sume that a scatterer at x is “far” from a point y on the antenna in the sense
that
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As a result, in the far field,

eik|x−y| eik|x|'
4π|x− y|

̂e−ikx·y.
4π|x|

This simplification will cause the y integrals to become Fourier transforms.

5.2 Forward model

We can now inspect the radiation field created by the antenna at the trans-
mission side. The ' sign will be dropped for =, although it is understood
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that the approximation is only accurate in the far field. Call j(x, ω) the
scalar analogue of the vector forcing generated by currents at the antenna,
called current density vector. (The dependence on ω is secondary.) Call p̂(ω)
the Fourier transform of the user-specified pulse p(t). Then

eik|x|
û0(x, ω) =

ˆ
4π|x|

e−ikx̂·yj(y, ω)p̂(ω) dy.

This reduces to a spatial Fourier transform of j in its first argument,

û0(x, ω) =
eik|x|

ĵ(1)(kx,̂ ω)p̂(ω).
4π|x|

For short, we let
J(x,̂ ω) = ĵ(1)(kx,̂ ω),

and call it the radiation beam pattern. It is determined by the shape of the
antenna. As a function of x̂, the radiation beam pattern is often quite broad
(not concentrated).

For an antenna centered at position γ(s), parametrized by s (called slow
time), the radiation field is therefore

eik|x−γ(s)|
û0,s(x, ω) = J(x −̂ γ(s), ω)p̂(ω).

4π|x− γ(s)|

The scattered field u1(x, ω) is not directly observed. Instead, the recorded
data are the linear functionals

d̂(s, ω) =

ˆ
u1(y, ω)w(y, ω) dy

As

against some window function w(x, ω), and where the integral is over the
antenna As centered at γ(s). Recall that u1 obeys (4.5), hence (with m
standing for what we used to call m1)

d̂
A

ˆ |
(s, ω) =

ˆ
eik|x−y

s

ω2û0(x, ω)m(x)w(y, ω) dydx.
4π|x− y|

In the regime of the the far-field approximation for an antenna at γ(s), we
get instead (still using an equality sign)

e
d̂(s, ω) =

ˆ ik|x−γ(s)|

4π|x− γ(s)|
ω2û0(x, ω)m(x)ŵ(1)(k( ̂x− γ(s)), ω).
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The start-stop approximation results in the same γ(s) used at transmission
and at reception. For short, we let

W (x,̂ ω) = ŵ(1)(kx,̂ ω),

and call it the reception beam pattern. For a perfectly conducting antenna,
the two beam patterns are equal by reciprocity: ($)

J(x,̂ ω) = W (x,̂ ω).

We can now carry through the substitutions and obtain the expression of the
linearized forward model F :

d̂(s, ω) = F̂m(s, ω) =

ˆ
e2ik|x−γ(s)|A(x, s, ω)m(x) dx, (5.1)

with amplitude

J −2 (x γ̂(s), ω)W (x −̂ γ(s), ω)
A(x, s, ω) = ω p̂(ω) .

16π2|x− γ(s)|2

So far we have assumed that x = (x1, x2, x3), and that dx a volume
element. We could alternatively assume a two-dimensional reflectivity profile
at a known elevation x3 = h(x1, x2). In that case we write

xT = (x1, x2, h(x1, x2)),

assume a reflectivity of the form m(x) = δ(x3 − h(x1, x2))V (x1, x2), and get (!)

d̂(s, ω) =

ˆ
e2ik|xT−γ(s)|A(xT , s, ω)V (x1, x2) dx1dx2.

In the sequel we assume h = 0 for simplicity. We also abuse notations slightly (!)
and write A(x, s, ω) for the amplitude.

The geometry of the formula for F is apparent if we return to the time
variable. For illustration, reduce A(x, s, ω) = ω2p̂(ω) to its leading ω depen-
dence. Then

1
d(s, t) =

2π

ˆ
e−iωtd̂(s, ω) dω

= − 1
(

p
2π

ˆ
′′ |x− γ(s)|

t− 2
c0

)
m(x) dx.
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We have used the fact that k = ω/c0 to help reduce the phase to the simple
expression

|x− γ(s)|
t− 2

c

Its physical significance is clear: the time taken for the waves to travel to
the scatterer and back is twice the distance |x − γ(s)| divided by the light
speed c0. Further assuming p(t) = δ(t), then there will be signal in the data

d(s, t) only at a time t = 2 |x−γ(s)| compatible with the kinematics of wave
c

propagation. The locus of possible scatterers giving rise to data d(s, t) is then
a sphere of radius ct/2, centered at the antenna γ(s). It is a good exercise
to modify these conclusions in case p(t) is a narrow pulse (oscillatory bump)
supported near t = 0, or even when the amplitude is returned to its original
form with beam patterns.

In SAR, s is called slow time, t is the fast time, and as we mentioned
earlier, |x− γ(s)| is called range.

5.3 Filtered backprojection

In the setting of the assumptions of section 5.1, the imaging operator F ∗ is 
called backprojection in SAR. Consider the data inner product1

〈d, Fm〉 =

ˆ
d̂(s, ω)F̂m(s, ω) dsdω.

As usual, we wish to isolate the dependence on m to identify 〈d, Fm〉 as
〈F ∗d,m〉. After using (5.1), we get

〈d, Fm〉 =

ˆ
m(x)

ˆˆ
e−2ik|x−γ(s)|A(x, s, ω)d̂(s, ω) dsdω dx.

This means that

(F ∗d)(x) =

ˆˆ
e−2ik|x−γ(s)|A(x, s, ω)d̂(s, ω) dsdω. (5.2)

Notice that the kernel of F ∗ is the conjugate of that of F , and that the
integration is over the data variables (s, ω) rather than the model variable x.

1It could be handy to introduce a multiplicative factor 2π in case the Parseval identity
were to be used later.
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The physical interpretation is clear if we pass to the t variable, by using
d̂(s, ω) =

´
eiωtd(s, t) dt in (5.2). Again, assume A(x, s, ω) = ω2p̂(ω). We

then have

1
(F ∗d)(x) = −

2π

ˆ
p′′
(
t− 2

|x− γ(s)|
)
d(s, t) dsdt.

c0

Assume for the moment that p(t) = δ(t); then F ∗ places a contribution to
the reflectivity at x if and only if there is signal in the data d(s, t) for s, t, x

linked by the same kinematic relation as earlier, namely t = 2 |x−γ(s)| . In other
c

words, it “spreads” the data d(s, t) along a sphere of radius ct/2, centered at
γ(s), and adds up those contributions over s and t. In practice p is a narrow
pulse, not a delta, hence those spheres become thin shells. Strictly speaking,
“backprojection” refers to the amplitude-free formulation A = constant, i.e.,
in the case when p′′(t) = δ(t). But we will use the word quite liberally, and
still refer to the more general formula (5.2) as backprojection. So do many
references in the literature.

Backprojection can also be written in the case when the reflectivity pro-
file is located at elevation h(x1, x2). It suffices to evaluate (5.2) at xT =
(x1, x2, h(x1, x2)).

We now turn to the problem of modifying backprojection to give a formula
approximating F−1 rather than F ∗. Hence the name filtered backprojection.
It will only be an approximation of F−1 because of sampling issues, as we
will see.

The phase −2ik|x − γ(s)| needs no modification: it is already “kinemat-
ically correct” (for deep reasons that will be expanded on at length in the 
chapter on microlocal analysis). Only the amplitude needs to be changed, to 
yield a new operator2 B to replace F ∗:

(Bd)(x) =

ˆˆ
e−2ik|x−γ(s)|Q(x, s, ω)d̂(s, ω) dsdω.

By composing B with F , we obtain

(BFm)(x) =

ˆ
K(x, y)m(y) dy,

2B for filtered Backprojection, or for Gregory Beylkin, who was the first to propose it
in 1984.
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with

K(x, y) =

ˆˆ
e−2ik|x−γ(s)|+2ik|y−γ(s)|Q(x, s, ω)A(y, s, ω) dsdω. (5.3)

M

The integral runs over the so-called data manifoldM. We wish to choose Q
so that BF is as close to the identity as possible, i.e.,

K(x, y) ' δ(x− y).

This can be done by reducing the oscillatory integral in (5.3) to an integral
of the form

1
,

(2

ˆ
ei(x−y)·ξ dξ

π)2

which, as we know, equals δ(y − x) if the integral is taken over R2. The
integral will turn out to be over a bounded set, the characterization of which
is linked to the question of resolution as explained in the next section, but
the heuristic that we want to approach δ(y − x) remains relevant.

As the integral in (5.3) is in data space (s, ω), we define ξ ∈ R2 as the
result of an as-yet undetermined change of variables

(s, ω) 7→ ξ = Ξ(s, ω;x).

(ξ is xi, Ξ is capital xi.) The additional dependence on x indicates that the
change of variables will be different for each x.

To find Ξ, we need to introduce some notations. We follow Borden-
Cheney [?] closely. Denote the range vector by

Ry,s = γ(s)− yT

For reference, its partials are

∂Ry,s
= γ̇(s),

∂s  
1 0

∇yRy,s = −0 1 = −P2.
0 0

We understand both R ,s
y and ∂Ry
,s a column 3-vectors in a matrix context.

∂s

The modification to deal with a nonzero elevation h(x1, x2) in xT is simple.
Then

∂

∂s
|Ry,s| =

(
∂Ry,s

∂s

)T
Ry,s

= γ̇(s) · R̂y,s,|Ry,s|
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(
∂Ry,s∇y|Ry,s| =
∂y

)T
Ry,s

= P T
,̂s

Ry,s| 2 Ry ,
|

where R̂y,s is the unit range vector. The operation of pre-multiplying a
column 3-vector by P T

2 corresponds to extraction of the first two components
of the vector. (Recall that x and y are coordinates in two dimensions, while
their physical realizations xT and yT have a zero third component.)

With the partial derivatives in hand we can now apply the principle of
stationary phase (see appendix C) to the integral (5.3). The coordinates x
and y are fixed when considering the phase

φ(s, ω) = 2k(|Ry,s| − |Rx.s|).

We can introduce a large parameter α in the phase by normalizing frequencies
as ω = αω′ (recall k = ω/c); the higher the frequency band of the pulse the
better the approximation from stationary phase asymptotics. The critical
points occur when

∂φ

∂ω
=

2
(|Ry,s| − |Rx.s|) = 0,
c

∂φ
= 2k γ̇(s) · (R̂y,s − R̂x,s) = 0.

∂s

The Hessian matrix is singular, which seemingly precludes a direct applica-
tion of lemma 5 in appendix 4, but the second example following the lemma
shows the trick needed to remedy the situation: use a trial function f(y) and
extend the integration variables to also include y. Henceforth we denote the
phase as φ(s, ω, y) to stress the extra dependence on y.

The critical points occur when 1) the ranges are equal, and 2) the down-
range velocities are equal. For fixed x, the first condition can be visualized
in three-dimensional yT -space as a sphere centered about γ(s), and passing
through xT . The second condition corresponds to a cone with symmetry

˙axis along the tangent vector γ(s) to the trajectory, and with the precise
opening angle that ensures that xT belongs to the cone. Thirdly, we have
yT = (y1, y2, 0), so an additional intersection with the horizontal plane z = 0
should be taken. The intersection of the sphere, the cone, and the plane,
consists of two points: yT = xT , and yT = xT,mirr, the mirror image of xT
about the local flight plane (the vertical plane containing γ̇(s)). In practice,
the antenna beam pattern “looks to one side”, so that A(x, s, ω) ' 0 for x on
the “uninteresting” side of the flight path, therefore the presence of xT,mirr
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can be ignored. (If not, the consequence would be that SAR images would
be symmetric about the flight plane.)

With the critical point essentially unique and at y = x, we can invoke
stationary phase to claim that the main contribution to the integral is due

(!) to points y near x. This allows to simplify the integral (5.3) in two ways: 1)
the amplitude A(y, s, ω) is smooth enough in y that we can approximate it
by A(x, s, ω), and 2) the phase factor can be approximated as locally linear
in y − x, as

φ(s, ω, y) = 2k(|Ry,s| − |Rx.s|) ' (y − x) · ξ.

A multivariable Taylor expansion reveals that ξ can be chosen as the y-
gradient of the phase, evaluated at x:

ξ = Ξ(x, ω;x) = ∇ T̂
yφ(s, ω, y)|y=x = 2kP2 Rx,s.

We have therefore reduced the expression of K(y, x) to

K(x, y) '
ˆ

ei(y−x)·Ξ(s,ω;x)Q(x, s, ω)A(x, s, ω) dsdω.
M

Changing from (s, ω) to ξ variables, and with a reasonable abuse of notation
in the arguments of the amplitudes, we get

K(x, y) '
ˆ
ei(y−x)·ξ ∂(s, ω)

Q(x, ξ)A(x, ξ) |
∂ξ

| dξ.

The Jacobian J = |∂(s,ω) | of the change of variables goes by the name Beylkin
∂ξ

determinant.
The proper choise of Q that will make this integral close to

´
ei(y−x)·ξ dξ

is now clear: we should take

1
Q(x, ξ) =

A(x, ξ)|∂(s,ω)
χ(x, ξ), (5.4)
|

∂ξ

(!) for some adequate cutoff χ(x, ξ) to prevent division by small numbers. The
presence of χ owes partly to the fact that A can be small, but also partly
(and mostly) to the fact that the data variables (s, ω) are limited to the data
manifold M. The image of M in the ξ domain is now an x-dependent set
that we may denote Ξ(M;x). The cutoff χ(x, ξ) essentially indicates this set
in the ξ variable, in a smooth way so as to avoid unwanted ringing artifacts.
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The conclusion is that, when Q is given by (5.4), the filtered backprojec-
tion operator B acts as an approximate inverse of F , and the kernel of BF
is well modeled by the approximate identity

K(x, y) '
ˆ

ei(y−x)·ξ dξ.
Ξ(M;x)

5.4 Resolution

See Borden-Cheney chapter 9.
(...)

c
∆x1 =

∆ω sinψ

∆x2 =
L
, L ≥ λ

2

5.5 Exercises

1. Prove (5.2) in an alternative fashion by substituting in the far-field
approximation of G in the imaging condition (4.7).

2. Bistatic SAR: repeat and modify the derivation of (5.1) in the case
of an antenna γ1(s) for transmission and another antenna γ2(s) for
reception.
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Appendix A

Calculus of variations,
functional derivatives

The calculus of variations is to multivariable calculus what functions are
to vectors. It answers the question of how to differentiate with respect to
functions, i.e., objects with an uncountable, infinite number of degrees of
freedom. Functional calculus is used to formulate linearized forward models
for imaging, as well as higher-order terms in Born series. It is also useful
for finding stationary-point conditions of Lagrangians, and gradient descent
directions in optimization.

Let X, Y be two function spaces endowed with norms and inner products
(technically, Hilbert spaces). A functional φ is a map from X to R. We
denote its action on a function f as φ(f). An operator F is a map from X
to Y . We denote its action on a function f as Ff .

We say that a functional φ is Fréchet differentiable at f ∈ X when there
exists a linear functional A : X 7→ R such that

|φ(f + h)− φ(f)− A(h)|
lim
h→0

= 0.
‖h‖

If this relation holds, we say that A is the functional derivative, or Fréchet
derivative, of φ at f , and we denote it as

δφ
A = [f ].

δf

It is also called the first variation of φ. It is the equivalent of the gradient in
multivariable calculus. The fact that A is a map from X to R corresponds

123
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to the idea that a gradient maps vectors to scalars when paired with the dot
product, to form directional derivatives. If X = Rn and f = (f1, . . . , fn), we
have

δφ
[f ](h) = ∇φ(f) · h.

δf

For this reason, it is is also fine to write A(h) = 〈A, h〉.
The differential ratio formula for δφ

δf
is called Gâteaux derivative,

δφ φ(f + th)− φ(f)
[f ](h) = lim

δf t→0
, (A.1)

t

which corresponds to the idea of the directional derivative in Rn.
Examples of functional derivatives:

• φ(f) = 〈g, f〉,
δφ

δf
[f ] = g,

δφ
[f ](h) = 〈g, h〉

δf

Because φ is linear, δφ = φ. Proof: φ(f + th) − φ(f) = 〈g, f + th〉 −
δf

〈g, f〉 = t〈g, h〉, then use (A.1).

• φ(f) = f(x0),

δφ
[f ] = δ(x− x0), (Dirac delta).

δf

This is the special case when g(x) = δ(x− x0). Again, δφ = φ.
δf

• φ(f) = 〈g, f 2〉,
δφ

[f ] = 2fg.
δf

Proof: φ(f + th)− φ(f) = 〈g, (f + th)2〉 − 〈g, f〉 = t〈g, 2fh〉+O(t2) =
t〈2fg, h〉+O(t2), then use (A.1).

Nonlinear operators F [f ] can also be differentiated with respect to their
input function. We say F : X → Y is Fréchet differentiable when there exists
a linear operator F : X → Y

‖F [f + h]−F [f ]− Fh‖
lim
h→0 ‖h‖

= 0.
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F is the functional derivative of F , and we write

δF
F = [f ].

δf

We still have the difference formula

δF
δf

[f ]h = lim
t→0

F [f + th]−F [f ]
.

t

Examples:

• F [f ] = f . Then
δF

[f ] = I,
δf

the identity. Proof: F is linear hence equals its functional derivative.
Alternatively, apply the difference formula to get δF [f ]h = h.

δf

• F [f ] = f 2. Then
δF

[f ] = 2f,
δf

the operator of multiplication by 2f .

Under a suitable smoothness assumption, the Fréchet Hessian of an op-
erator F can also be defined: it takes two functions as input, and returns
a function in a linear manner (“bilinear operator”). It is defined through a
similar finite-difference formula

δ2F〈
δf 2

[f ]h1, h2〉 = lim
t→0

F [f + t(h2 + h1)]−F [f + th2]−F [f + th1] + F [f ]
.

t2

The Hessian is also called second variation of F . For practical calculations
of the Hessian, the notation δ2F is

δf2
too cavalier. Instead, it is useful to view

the Hessian as the double directional derivative

δ2F
δfδf ′

in two directions f and f ′, and compute those derivatives one at a time. This
formula is the equivalent of the mixed partial ∂2f when the two directions

∂xi∂xj

are xi and xj in n dimensions.



126APPENDIX A. CALCULUS OF VARIATIONS, FUNCTIONAL DERIVATIVES

Functional derivatives obey all the properties of multivariable calculus,
such as chain rule and derivative of a product (when all the parties are
sufficiently differentiable).

Whenever in doubt when faced with calculations involving functional
derivatives, keep track of free variables vs. integration variables — the equiv-
alent of “free indices” and “summation indices” in vector calculus. For in-
stance,

• δF
δf

is like δFi
δfj

, with two free indices i and j;

• δF
δf
h is like

∑
j
δFihj, with one free index i and one summation index j.
δfj

• δ2F
δf2

is like δ2Fi
δfjδfk

, with three free indices i, j, k.

• 〈 δ2F
δf2

h1, h2〉 is like
∑

j,k
δ2Fi (h1)j(h2)k, with one free index i and two
δfjδfk

summation indices j and k.

No free index indicates a scalar, one free index indicates a function (or a
functional), two free indices indicate an operator, three indices indicate an
“object that takes in two functions and returns one”, etc.



Appendix B

Finite difference methods for
wave equations

Many types of numerical methods exist for computing solutions to wave
equations – finite differences are the simplest, though often not the most
accurate ones.

Consider for illustration the 1D time-dependent problem

∂2u
m(x)

∂t2
=
∂2u

+ f(x, t), x ∈ [0, 1],
∂x2

with smooth f(x, t), and, say, zero initial conditions. The simplest finite
difference scheme for this equation is set up as follows:

• Space is discretized over N + 1 points as xj = j∆x with ∆x = 1 and
N

j = 0, . . . , N .

• Time is discretized as tn = n∆t with n = 0, 1, 2, . . .. Call unj the com-
puted approximation to u(xj, tn). (In this appendix, n is a superscript.)

• The centered finite difference formula for the second-order spatial deriva-
tive is

∂2u

∂x2
(xj, tn) =

unj+1 − 2unj + unj−1
+O((∆x)2),

(∆x)2

provided u is sufficiently smooth – the O(·) notation hides a multiplica-
tive constant proportional to ∂4u/∂x4.

127



128APPENDIX B. FINITE DIFFERENCEMETHODS FORWAVE EQUATIONS

• Similarly, the centered finite difference formula for the second-order
time derivative is

∂2u

∂t2
(xj, tn) =

un+1
j − 2unj + un−1

j
+O((∆t)2),

(∆t)2

provided u is sufficiently smooth.

• Multiplication by m(x) is realized by multiplication on the grid by
m(xj). Gather all the discrete operators to get the discrete wave equa-
tion.

• The wave equation is then solved by marching: assume that the values
of un−1

j and unj are known for all j, then isolate un+1
j in the expression

of the discrete wave equation.

Dirichlet boundary conditions are implemented by fixing. e.g., u0 = a.
Neumann conditions involve a finite difference, such as u1−u0

∆x
= a. The more

accurate, centered difference approximation u1−u−1 = a with a ghost node at
2∆x

u−1 can also be used, provided the discrete wave equation is evaluated one
more time at x0 to close the resulting system. In 1D the absorbing boundary
condition has the explicit form 1∂tu±∂xu = 0 for left (-) and right-going (+)

c

waves respectively, and can be implemented with adequate differences (such
as upwind in space and forward in time).

The grid spacing ∆x is typically chosen as a small fraction of the rep-
resentative wavelength in the solution. The time step ∆t is limited by the
CFL condition ∆t ≤ ∆x /maxx c(x), and is typically taken to be a fraction
thereof.

In two spatial dimensions, the simplest discrete Laplacian is the 5-point
stencil which combines the two 3-point centered schemes in x and in y. Its
accuracy is also O(max{∆x)2, (∆y)2}). Designing good absorbing boundary
conditions is a somewhat difficult problem that has a long history. The
currently most popular solution to this problem is to slightly expand the
computational domain using an absorbing, perfectly-matched layer (PML).

More accurate schemes can be obtained from higher-order finite differ-
ences. Low-order schemes such as the one explained above typically suffer
from unacceptable numerical dispersion at large times. If accuracy is a big
concern, spectral methods (spectral elements, Chebyshev polynomials, etc.)
are by far the best way to solve wave equations numerically with a controlled,
small number of points per wavelength.



Appendix C

Stationary phase

See Stein’s book Harmonic analysis [?], chapter 8, as a reference on station-
ary phase and for proofs of the claims below.

If an integrand has a phase factor with no stationary points, and the am-
plitude is otherwise smooth, then the integral has a very small value because
the positive parts cancel out the negative parts. The following result makes
this heuristic precise as an asymptotic bound on the value of the integral
when the phase has a large prefactor.

Lemma 4. (The non-stationary phase lemma.) Let χ ∈ C∞0 (Rn), φ ∈
C∞(suppχ), and let

Iα =

ˆ
eiαφ(x)χ(x)dx.

Rn

If ∇φ(x) 6= 0 for all x ∈ suppχ, then

|Iα| ≤ Cmα
−m, for all m > 0.

Proof. Integrate by parts after inserting an m-th power of the differential
operator

I −∆x
L = ,

1 + α2|∇xφ(x)|2

which leaves the exponential factor unchanged. A fortiori, 1+α2|∇xφ(x)|2 >
Cα2 for some number C > 0. Deal with the odd values of m by interpolation
(geometric mean) from the m− 1 and m+ 1 cases.

If the phase otherwise has critical points, then the value of the integral
is mostly determined by the behavior of the integrand near those critical
points.
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Lemma 5. Consider the same setting as earlier, but consider the presence
of a point x∗ such that

∇φ(x∗) = 0, D2φ(x∗) invertible,

where D2φ denotes the Hessian matrix of φ. Assume that ∇φ(x) 6= 0 for
x 6= x∗. Then, as α→∞,(

2π
Iα =

α

)n/2
χ(x∗)eiαφ(x∗) ei

π
4
sgn(D2φ(x∗))√

det(D2φ(x∗))
+O(α−

n−1
2 ),

where sgn denotes the signature of a matrix (the number of positive eigenval-
ues minus the number of negative eigenvalues.)

See [?] for a proof. More generally, if there exists a point x∗ where all the
partials of φ of order less than or equal to ` vanish, but ∂`φ(x∗)/∂x`1 6= 0 in
some direction x1, then it is possible to show that Iα = O(α−1/`).

Here are a few examples.

• A good example for the above lemma is
ˆ ∞

eiαx
2 1
dx ∼

−∞
√ .
α

The real part of the integrand, cos(αx2), is non-oscillatory at the origin,
but develops significant oscillations as soon as x is on the order of√
±1/ α. The extent of the range over which the integrand essentially
does not oscillate (e.g., as measured from the length of the first half
period) determines the order of magnitude of the value of the integral.

• An important case not immediately handled by any of the previous
lemmas is the stationary phase explanation of the often-invoked fact
that1 ( )ˆ ˆ

ei(y−x)·ξdξ f(x)dx ∼ f(y).
Rn Rn

The large factor α of the stationary phase lemmas can be placed in the
exponent as iα(y − x) · ξ. The rescaling ξ′ = αξ quickly helps to get

1The actual value of the integral is (2π)nf(y). The function f is only required to be
continuous with some decay at infinity for this relation to make sense pointwise. Fourier
analysis makes all of this precise, of course.
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rid of it by turning it into a multiplicative 1/αn factor for the integral
above. Hence the equivalent, stationary-phase-friendly formulation of
the relation above is really( )ˆ ˆ

eiα(y−x)·ξ f(y)
dξ f(x)dx ∼

Rn Rn
.

αn

As a function of ξ alone, the phase φ(ξ) = (y−x) ·ξ has a critical point
when x = y , but the Hessian is degenerate: φ′′(ξ) = 0. We cannot
apply any of the stationary phase lemmas to the integral on ξ alone.

The solution is to consider the double integral over x and ξ: the phase
φ(x, ξ) = (y− x) · ξ is still critical when x = y, and now ξ = 0, but the
Hessian matrix is ( ) ( )

2 ∇x∇xφ ∇ 0
φ x∇= ξφ −I

D = ,∇ξ∇xφ ∇ξ∇ξφ −I 0

which is invertible independently of the base point (x∗, ξ∗). Hence
lemma 5 applies in 2n dimensions, and actually predicts the exact value
of the integral, namely (2π/α)nf(y). The condition y = x signifies that,
of all the values of f(x), only that at x = y matters for the result of
the integral. The condition ξ = 0 is a manifestation of the fact that
f(x) was assumed to be minimially smooth (hence it is f̂(0) when ξ = 0
that matters). The function f may have oscillatory factors like ei 100ψ(x)

for some other phase ψ, but no factors of the form eiαψ(x) involving α
explcitly.

• Another interesting example is the integral( )ˆ ˆ
ei(y−x)·ξdξ

ˆ
eix·ηF (η)dη dx

Rn Rn

which often appears in Fourier analysis. It can be seen as the compo-
sition of an inverse Fourier transform of F , from η to x, followed by a
Fourier transform, from x to ξ, followed by an inverse Fourier trans-
form, from ξ to y. Indeed, the integral reduces to (an unimportant

ˇmultiple of 2π times) F (y). For fixed η we can still see the phase as
having two arguments, namely φ(x, ξ) = (y − x) · ξ + x · η, but the
equations for the critical points now look more symmetric:

∂φ ∂φ
= η − x = 0,

∂x ∂ξ
= y − x = 0,



132 APPENDIX C. STATIONARY PHASE

and D2φ is the same as previously. We now have x∗ = y and ξ∗ = η,
so φ(x∗, ξ∗) = y · η. Stationary phase over the inner (x, ξ) variables
then reduces the outer η integral to (a constant times)

´
eiy·ηF (η)dη,

as needed.

The relation η = ξ indicates that, in the course of the first two Fourier
transforms taking η to x, then to ξ, it is only the value of F at η =
ξ which matters to determine the result F (ξ). The relation x = y
indicates that, from the result f(x) of having done the first Fourier
transform from η to x, it is only the value f(y) at x = y which matters

ˇto determine the end result f(y) = F (y).

The set of equations
x = y, ξ = η

is a simple example of a so-called canonical relation in phase-space,
the space made of all the quadruples (x, ξ; y, η). In particular, it is
precisely the relation corresponding to the identity map from (x, ξ) to
(y, η). The adjective “canonical” refers to the fact that the map is
symplectic, i.e., preserves areas, which is instantiated in our context by
the fact that | detD2φ | = 1. Phase-space relations are introduced and
used in chapter 8.
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