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If we have questions about the problem set, we can ask. The oÿcial oÿce hours are right after this class on Mondays, but 

we can also schedule other times. 

A few bonus problems will be added to make the problem set more interesting. 

Last week, we talked about q-binomial coeÿcients and q-factorials, which are special cases of another quantity: 

Definition 1 

The q-multinomial coeÿcients � � 
n 

= 
[n]q ! 

n1, n2, · · · , nr [n1]q ![n2]q ! · · · [nr ]q ! q 

can be defined for n = n1 + · · · + nr and all ni ≥ 0. 

� � � � � � 
n n n 

Note that is just [n]q !, and is just . 
1, 1, · · · , 1 r, n − r r 

q q q 

Definition 2 

A multiset is like a regular set, but we allow entries to appear multiple times. For example, we can have 1 appear n1 
times, 2 appear n2 times, and so on: this will be abbreviated as 

S = {1n1 , 2n2 , · · · , r nr }. 

So now let’s consider w = (w1, · · · , wn) as a permutation on the multiset S. We define an inversion very similarly: 

Definition 3 

An inversion in w is a pair of indices (i , j) where 1 ≤ i < j ≤ n and wi > wj . We also define inv(w ) to be the number 

of inversions in w . 

Then the main theorem is very similar: 

Theorem 4 

For any q-multinomial coeÿcient, � � 
n X 

inv w = q 
n1, · · · , nr q w 
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where the sum is taken over all permutations of {1n1 , 2n2 , · · · , r nr }. 

� � 
The proof is similarly by induction, and it is an exercise on the problem set! As a corollary, we know that 

n 
n1, · · · , nr q 

is a polynomial in q with positive integer coeÿcients. The degree of this polynomial is the maximum number of inversions, 

which happens when we write everything in weakly decreasing order: this is just X 
d = nanb. 

1≤a<b≤r 

Similarly, we also know that the coeÿcients are symmetric: ai = ad−i . This follows from the fact that we can just flip the 

whole sequence around! Basically, 

inv(w1, · · · , wn) = d − inv(wn, wn−1, · · · , w1), 

since any pair of distinct entries is an inversion in one or the other and d is the total number of pairs of distinct entries. 

By the way, if our multiset only contains 1s and 2s, so S = {1k 2n−k }, there is a correspondence between permutations of 

S and Young diagrams λ ⊆ k × (n − k). 

Example 5 

Let w = (2, 1, 1, 2, 2, 1, 2, 2, 1): transform this into a lattice path, going up when we see a 1 and right when we see a 

2. 

Then the number of squares |λ| corresponds to the number of inversions, since we can just match the corresponding 2 

and 1! 

What if we do r = 3? We can think of this as a lattice path in a 3-dimensional box, and we go up, right, or into the 

page each time we see a 1, 2, 3 respectively. It’s not quite as clean, though. 

Let’s move on to a new idea! 

Let [n] be the set {1, 2, · · · , n}. Given any permutation w , we can think of it as a bijective map 

w : [n] → [n]. 

We can multiply such maps or take compositions: that’s how we multiply permutations! These permutations form a group 

Sn, called the symmetric group. 

Fact 6 

Stanley’s book uses Sn instead of Sn. 

There’s several di˙erent ways we can notate permutations: 

name notation example 
1-line notation 

2-line notation 

Cycle notation 

(w1, · · · , wn) � � 
1 2 · · · n 
w1 w2 · · · wn 
(a1a2a3) · · · 

(2, 5, 7, 3, 1, 6, 8, 4) � � 
1 2 3 4 5 6 7 8 
2 5 7 3 1 6 8 4 

(125)(3784)(6) 
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Cycle notation is the most important here: we keep following the permutation until we get back to a point we’ve already 

been at. Trivial cycles like (6) are sometimes omitted, and they’re called fixed points of w . 

There’s two more: in graphical notation, draw arrows from numbers to where they go. This forms closed polygons. 

Finally, we have matrix notation (ai j ) where 8< : 1 j = w (i) 
ai j = 

0 otherwise 

which is an n × n matrix. Here, the matrix is “either this one or the transpose:”1 0 

w = 

BBBBBBBBBB@ 

0 0 0 0 1 0 0 0 
1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 
0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 

CCCCCCCCCCA 
We want the one where multiplication works with permutations. 

Fact 7 

Exercise: is this one the correct one? 

Notice that this corresponds to rook placement on a chessboard! Place rooks where there are 1s, so there are no rooks 

attacking each other. There are many problems about non-attacking rook placements, and we’ll talk about them later in 

this class. 

What we’re going to discuss next is statistics on permutations! Basically, we’ll somehow map 

A : Sn → {0, 1, 2, · · · , } 

and form a generating function X 
A(w) FA(x) = x . 

w ∈Sn 

Definition 8 

Two statistics A and B are equidistributed if they have the same generating function. 

Here are some common statistics that are studied: 

• Number of inversions inv(w) 
• The length of a permutation `(w ), defined to be the minimum number ` of adjacent transpositions (of the form 

si , switching i and i + 1 but not 1 and n) needed to express w . 

It’s a fact that we can write any permutation as a sum of adjacent transpositions: just induct on n by switching n into 

the last spot. 

Example 9 

We can switch 123 → 213 → 231 → 321, so `(321) is at most 3. It is in fact 3, and this is also the number of 

inversions. 
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This is not a coincidence! 

Theorem 10 

For any permutation w , the length of w is also the number of inversions of w . 

So those two statistics aren’t just equidistributed: they’re actually the same statistic. Let’s go back quickly to the 

generating function and do the proof more carefully: 

Theorem 11 

The generating function X 
inv w q = (1 + q)(1 + q + q 2) + · · · + (1 + q + · · · + q n−1) = [n]q !. 

w ∈Sn 

Proof. This is true by induction on n. This holds for n = 1, and now let’s say it holds for n − 1. 

There are n permutations that can be created by extending an element of Sn−1: just put the n somewhere inside. Those 

n insertions add n − 1, n − 2, · · · , 1, 0 inversions respectively, so this is X X 
inv(w) inv(u)(1 + q + q 2 n−1 q = q + · · · + q = [n − 1]q ![n]q = [n]q !, 

w∈Sn u∈Sn−1 

as desired. 

Back to statistics: 

• The number of cycles in w , denoted cyc(w ), including fixed points. 

For example, w = (2, 5, 7, 3, 1, 6, 8, 4) in cycle notation is (125)(3784)(6), so cyc(w ) = 3. Note that by degree 

arguments, this can’t be equidistributed with the number of inversions! 

Theorem 12 

For any n, X 
cyc(w) x = x(1 + x)(2 + x) · · · (n − 1 + x). 

w ∈Sn 

Proof. Let’s do this by induction. Write our permutations in cycle notation, and let’s say we insert n into our permutation. 

It can either be inserted into one of the existing permutations, or it can go by itself. 

There are n − 1 ways to insert into an existing spot and keep the number of cycles the same, since it does matter where 

we insert n into an existing cycle, and 1 way to add a new cycle. That’s exactly the ((n − 1) + x) that we want! 
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