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n−2 Recall that we started talking about the Cayley formula last week: the number of labeled trees on n vertices is n . We 

gave a proof last time, and we’ll review it in more detail today. 

Consider the polynomial 
n X Y 

deg(i)−1 
Fn(x1, · · · , xn) = xi . 

T tree on [n] i=1 

The degree of a vertex in any graph is the number of edges adjacent to that vertex. Then we wish to show the following 

result: 

Theorem 1 

)n−2 Fn = (x1 + · · · + xn . 

Proof. We want to show that Rn = Fn − (x1 + · · · + xn)n−2 is identically zero. We do this by induction: this is true for 

n = 1, 2. 

First of all, Rn is either a homogeneous polynomial in our variables x1, · · · , xn of degree n − 2 or zero. This is because P 
each monomial in the sum has total degree (deg(i)) − n, which is (2n − 2) − n = n − 2. 

Now, if we pick any 1 ≤ i ≤ n and evaluate Rn at xi = 0, then we have 

Rn−1(x1, · · · , xi−1, xi+1, · · · , n)(x1 + · · · + xi−1 + xi+1 + · · · + xn). 

(we can denote this “skipping” of xi as x̂i as well). This is because all terms disappear except those where i has degree 1, so 

it’s a leaf: this can be constructed by having a labeled tree on the other n − 1 vertices and then adding the leaf anywhere! 

But the right hand side is 0 by induction, so that means that f when evaluated at xi = 0 is always 0. Now assume 
a1 an that our polynomial f is not equal to zero: then it contains at least one monomial of the form x · · · x . Since the 1 n 

polynomial Rn has degree n − 2, a1 + · · · + an ≤ n − 1: this means there exists an i with ai = 0 in that monomial. But 

when we evaluate this at xi = 0, that monomial survives, and therefore Rn 6= 0: contradiction! So Rn must just be the 

zero polynomial, which yields what we want. 

(Alternatively, xi is a factor for all i , so Rn must contain a factor x1x2 · · · xn, which has degree larger than Rn unless 

Rn = 0.) 
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Corollary 2 
n−2 Setting all xi = 1, the number of trees on n vertices is n . 

We have barely used any properties of trees here, so it’s a bit hard to believe! In combinatorics, we like to give a bijective 

proof, so let’s try to construct a bijection between trees and objects whose object is nn−2 . 

There are several bijective proofs that exist: let’s go through a few of them. 

Proof by Prufer, 1918. We’re going to set up a bijection between trees T on n vertices and sequences (c1, · · · , cn−2), 
where all ci ∈ [n]! Clearly the latter has nn−2 possible elements. This sequence is called the Prufer code. 

We’ll write out the procedure and then do an example. 

• Find the leaf (vertex with degree 1) v with the minimal possible label. Any tree with at least 1 vertex contains a leaf. 
• Record (in the code) the label that v is attached to in our tree. 
• Remove v (and the adjacent edge) from T . 
• Repeat these three steps a total of n − 2 times! 

As an example, consider the following tree: 

1 
2 

3 

7 8 

4 
5 

6 

Initially, the smallest leaf has label 2, and it is attached to 8, so we write down 8 : now we erase label 2. 

1 3 

7 8 

4 
5 

6 

Now, the minimal leaf is 3, and it is attached to 1, so we write down 1 . 

1 

7 8 

4 
5 

6 

Next, the minimal leaf is 4, and it is attached to 5 : 
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1 

7 8 

5 
6 

1 

7 8 

5 

6 is attached to 5 : 

5 is attached to 1 : 

1 

7 8 

7 8 

Finally, 1 is attached to 8 : 

and now we’re done: our Prufer code is (8, 1, 5, 5, 1, 8) . To show this is actually a bijection, we need to be able to 

invert our construction! 

Notice that our vertex 5 has degree 3 originally: it appears twice in the code. Similarly, 1 has degree 3 and appears 

twice in the code. 

Fact 3 

Basically, every vertex appears deg(v) − 1 times in our code! 

This is because every time we erase an edge to i , we record i down, except when i is a leaf: then it is removed and its 

neighbor is recorded instead. 

So the labels that don’t show up in the Prufer code are exactly the leaves in our tree! Here’s the decoding process: let’s 

say we’re given (c1, · · · , cn−2) as our initial Prufer code. 

• Initially, set (c1, · · · , cn−2) to be our Code, and set Labels to be {1, 2, · · · , n}. 
• Find the minimal leaf by finding the smallest element ` of Labels that is not in Code. Connect ` to the first element 

c of Code (because this was the first step of our coding process: we removed the smallest leaf and recorded its 

neighbor). 
• Remove ` from Labels and c from Code. 
• Repeat these steps a total of n − 2 times until Code is empty. Now we’ve connected everything except our final 

edge. 
• There are now two labels left: connect them! 
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So let’s try doing this in reverse: we start with our Prufer Code (8, 1, 5, 5, 1, 8) and Labels {1, 2, 3, 4, 5, 6, 7, 8}. The 

minimal element that doesn’t appear is 2, so connect 2 to 8. 

1 
2 

3 

7 8 

4 
5 

6 

Now Code is (1, 5, 5, 1, 8) and Labels is {1, 3, 4, 5, 6, 7, 8}. Now connect 3 to 1: 

1 
2 

3 

7 8 

4 
5 

6 

Now just continue this process! We connect 4 to 5, and then 6 to 5, and now 5 is connected to 1, 1 is connected to 8, 

and we finish by connecting 8 and 7. This constructs our original tree, as desired! 

Notice that this gives us more than just the bijection. 

Proposition 4 

If we fix d1, · · · , dn ≥ 1, then the number of labeled trees on n vertices with degrees d1, · · · , dn for vertices 1, 2, · · · , n 
is the number of codes where i appears di times: � � 

n − 2 
, 

(d1 − 1), (d2 − 1), · · · , (dn − 1) 

as long as d1 + · · · + dn = 2n − 2. 

There are a lot of other combinatorial proofs: here’s one more. 

Proof by Eĝecioĝlu-Remmel, 1986, based on Joyal 1981. Let’s assume that node 1 is the “root of the tree:” orient all 

edges of our graph towards the root. Let’s use this tree as an example: 

1 7 3 8 13 4 10 15 

9 12 2 11 

5 

14 6 
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The path from our maximal element 15 to 1 is a partial permutation 

P = 15, 10, 4, 13, 8, 3, 7, 1. 

Mark all left-to-right minima: this is 15, 10, 4, 3, 1, and now we’ll break up our partial permutation into cycles: 

P = (15)(10)(4, 13, 8)(3, 7)(1). 

Now erase our path, and replace it with a cycle! So our path now becomes a loop at 15, a loop at 10, a cycle between 

4, 13, 8, a cycle between 3 and 7, and a loop at 1. 

Notice that we will always have a loop at 1 and a loop at 15. Now notice that there’s still exactly one edge coming out 

of each vertex, so now we can define a function f such that f (i) = j if i points to j . This is a map from [n] to [n] that 

fixes 1 and n, so there are exactly nn−2 such functions. 

Turns out this is a bijection between all trees on n nodes and all maps f ! This is a lot like transforming cycle notation 

to one-line notation and vice versa: we’ll discuss this a bit more next time. 
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