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Let’s go back to the unimodality of the Gaussian coefficients - the easiest proof is to use linear algebra instead of a

combinatorial proof. Remember that we consider[
k + l

k

]
q

= a) + a1q + · · ·+ aklqkl ,

and we want to show the coefficients are increasing and then decreasing.

The idea is to consider Vn, the linear space of formal linear combinations of Young diagrams λ in a k by l rectangle with

n squares. The dimension is just an, the number of possible Young diagrams, and our goal is to show that ai ≤ ai+1 for all

i < kl
2 : by symmetry of the coefficients, we get the result.

Consider a weighted up operator Un : Vn → Vn+1 which sends

λ→
∑

µ=λ∪{x}
µmλ

√
w(x)µ,

where w is a weight function sending boxes of k × l rectangles to positive reals. Similarly, we consider the weighted down
operator Dn : Vn+1 → Vn, sending

λ→
∑

µ=λ\{x}
µlλ

√
w(x)µ.

Define our commutator

Hn = DnUn − Un−1Dn−1;

notice that this takes any element in Vn to another element in Vn. We can represent Un with an an+1 by an matrix, and we
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can represent Dn by its transpose: UTn .

Fact 187

They are transposes, because all nonzero entries in Un have
√
x in the entry (a, b), where a and b differ by the box x ,

and entries in Dn have
√
x in the entry (b, a).

Claim 187.1. Hn is a diagonal matrix with entries

(Hn)λ,λ =
∑

x∈Add(λ)

w(x)−
∑

y∈Remove(λ)

w(y).

Why is this? The off-diagonal entries mean we start with a Young diagram, add a box, and remove a different box: this

is equivalent to first removing the other box and then add it, so those always cancel out. Meanwhile, the diagonal entries

get a
√
w(x)

2
= w(x) contribution.

Here’s a diagram: the As are part of Add(λ), while the Rs are part of Remove(λ).

R A

A

R

So let’s assume we can find a weight function w so that the matrix Hn has positive diagonal entries: thus, the eigenvalues

are all positive. Then

DnUn = Un−1Dn−1 +Hn = Un−1U
T
n−1 +Hn.

Un−1U
T
n−1 is positive semi-definite (since for any matrix A, xAAT x is the square of the standard dot product of AT x with

itself), and Hn is positive definite, so their sum is positive definite (this is a fact from linear algebra!) This means DnUn
has nonzero determinant, and therefore the rank of DnUn is an.

Fact 188 (Other linear algebra fact)

Let A be an m × n matrix and let B be an n × k matrix. Then the rank of AB is less than the minimum of m, n, k ,

since rank can’t increase with products or be larger than the dimensions of the matrices!

So the rank of DnUn is an, but Dn is an an × an+1 matrix and Un is an+1 × an. So an ≤ min(an, an+1) and therefore

an ≤ an+1, as desired! So as long as we can find a weight function, we are good.

Well, define w : [k ]× [l ]→ R>0 as

w(i , j) = (i − j + l)(j − i + k), 1 ≤ i ≤ k, 1 ≤ j ≤ l .

Example 189

Here it is for k = 3, l = 4:

12 12 10 6

10 12 12 10

6 10 12 12

Note that all of these are of the form n(7− n), and it is larger closer to the centers.

We claim that this weight function works! Here’s why:
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Lemma 190

For all λ contained in a k × l box,

wλ =
∑

x∈Add(λ)

w(x)−
∑

y∈Remove(λ)

w(y) = kl − 2|λ|.

So this is positive as long as n = |λ| < kl
2 .

This will be an exercise! In the diagram above, the sum of the As is 18, while the sum of the Rs is 16.

Let’s shift gears now and talk about partitions. Recall that p(n) is the number of partitions of n, which is the number of

Young diagrams with n boxes.

Theorem 191

The generating function ∑
n≥0
p(n)qn =

1

(1− q)(1− q2)(1− q3) · · · .

Expanding this out, it is

(1 + q + q2 + · · · )(1 + q2 + q4 + · · · )(1 + qn + · · · )

and it’s okay to only go up to the first n terms, since all other terms will have a higher power! So we can always truncate

this to a finite product with finite terms.

Proof. We know that [
k + l

k

]
q

=
∑
λ⊆k×l

q|λ|.

Take the limit as k, l → ∞. Then we’re summing over all Young diagrams, and just expand out the q-binomial

coefficient!

A better proof. We can encode our partition λ = (λ1 ≥ λ2 ≥ · · · ) by a different set of integers: let mi be the number of

times i appears in λ, that is, the number of js such that λj = i . Then we can encode the multiplicities ni λ = (1m12m2 · · · ).
So now, a partition (6, 4, 4, 3, 1, 1) is now encoded via (122031425061), which corresponds to picking out the q2 term in

(1 + q + q2 + · · · ), the 1 term in (1 + q2 + q4 + · · · ), the q3 term in (1 + q3 + q6 + · · · ), and so on! More rigorously, the

sum ∑
n≥0
p(n)qn =

∑
m1,m2,···≥0

= qm1+2m2+3m3+···

can be factored as ∑
m1

qm1 ·
∑
m2

q2m2 ·
∑
m3

q3m3 · · ·

which is just
1

1− q
1

1− q2 · · ·

as desired.

There are also some special classes of partitions.

Definition 192
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Define podd(n) to be the number of partitions of n into odd parts: λ = λ1 + λ2 + · · · , where all λi are odd.

This means mi = 0 for all even i , and the generating function is
1

1− q ·
1

1− q3 ·
1

1− q5 · · · .

Definition 193

Define pdist(n) to be the number of partitions of n into distinct parts: we have λ = (λ1 > λ2 > · · · ).

This means mi ≤ 1 for all i , so the generating function is

(1 + q)(1 + q2)(1 + q3) · · · .

Theorem 194 (Euler, 1748)

podd(n) = pdist(n).

For example, for n = 5, we can break it into odd parts as 5 = 3 + 1 + 1 = 1 + 1 + 1 + 1 + 1, and we can break it into

distinct parts as 5 = 4 + 1 = 3 + 2.

Proof. Our goal is to check that the generating functions above are equal! Take the generating function for pdist: it is

(1 + q)(1 + q2)(1 + q3) · · · =
(1 + q)(1− q)
1− q ·

(1 + q2)(1− q2)
1− q2 ·

(1 + q3)(1− q3)
1− q3 · · ·

=
(1− q2)(1− q4)(1− q6) · · ·
(1− q)(1− q2)(1− q3) · · · =

1

(1− q)(1− q3)(1− q5) · · · ,

which is the generating function for podd as desired.

There’s also a combinatorial proof! This is left as an exercise as well.

Theorem 195 (Euler’s pentagonal number theorem, 1750)

We have
1∑

n≥0 p(n)q
n
= (1− q)(1− q2)(1− q3) · · · =

∞∑
m=−∞

(−1)mqm(3m−1)/2.

This basically counts the number of partitions with even versus odd parts and finds their difference: apparently this is 0

for almost all values of n. Numbers of the form m(3m − 1)/2 are called pentagonal numbers, because it’s the number of

dots in successive dilations of a pentagon!
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