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Recall that we’ve been talking about ranked posets: given a poset P with a rank function ρ : P → Z≥ 0, we can construct 

sets Pi = {x ∈ P | ρ(x) = i} of a given rank, and we let ri = |Pi | be the rank numbers. 

We defined P to be rank-symmetric if ri = rN−i for all i and unimodal if the ranks increase to a point and then 

decrease. We also defined Sperner posets to be those in which the maximal size M of an antichain in P is the maximum 

among the ri s. 

Theorem 1 (Sperner’s theorem (1928)) 

The Boolean lattice Bn is Sperner. 

There’s a property of posets that implies all three of the ideas above! 

Definition 2 

A saturated chain C has elements {x0 l x1 l x2 · · · }, so we can’t put anything between the elements of the chain. In 

particular, the rank ρ(xi ) = ρ(x0) + i . A symmetric chain decomposition (SCD) is a decomposition of a poset P ’s 

elements into a disjoint union of saturated chains Ci such that for all chains Ci = {x0 l · · · l x`, ρ(x`) = N − ρ(x0). 

For example, here is a poset that has a symmetric chain decomposition: 

Lemma 3 

If P has a symmetric chain decomposition, then it is rank-symmetric, unimodal, and Sperner. 
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Proof. Each chain contributes 1 to some set of rank numbers which is symmetric about the middle, so the rank numbers 

will be symmetric. (The sum of palindromic vectors is palindromic). Unimodality is also obvious: the sum of vectors that 

are unimodal and symmetric about the same mean is unimodal. 

To show that it is Sperner, note that the middle rank is exactly the number of symmetric chains we have in our symmetric 

chain decomposition: this is because we can write P = C1 ∪ C2 ∪ · · · ∪ Cm, and each chain intersects the middle level 

exactly once (as they are saturated and symmetric about the middle). (If there are two middle levels, it’s true for both.) 

The middle rank is the maximal rank number, and any antichain cannot contain two elements in the same chain Ci . Thus 

the maximal size of any antichain is m, and we’re done! 

Why is this an important lemma at all? Let [n] denote the poset with n elements in a chain. 

Fact 4 

Then the Boolean lattice Bn = [2] × [2] × · · · × [2] (n times). 

For example, [2] × [2] is a square, [2] × [2] × [2] is the 1-skeleton of a cube, and so on. 

Theorem 5 (de Bruijn, 1948 + generalization) 

Bn has a symmetric chain decomposition! More generally, [a] × [b] × · · · × [c ] has a symmetric chain decomposition 

for any product of this form. 

To show this, let’s use some sublemmas: 

Lemma 6 

[a] × [b] has a symmetric chain decomposition. 

Here’s a proof by picture: 
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Lemma 7 

If posets P and Q have symmetric chain decompositions, then P × Q has a symmetric chain decomposition. 

Proof. Let P = C1 ∪ C2 ∪ · · · ∪ Ck , and Q = C 0 1 ∪ · · · ∪ C ̀ , we can write P as a disjoint union of products of chains [ 
P × J = Ci × C 

0 

0 
j . 

(i ,j) 

But each saturated chain Ci × C 0 j is of the form [a] × [b], and pick a symmetric chain decomposition for each Ci × C 0 j as 

we did in the lemma above! This gives a symmetric chain decomposition for the whole poset P . 

Let’s go back to looking at finite posets in general. Given any poset P , remember that we define M(P ) to be the 

maximum number of elements in any antichain of P . Define m(P ) to be the minimum number of disjoint chains needed to 

cover all elements of P . 

Theorem 8 (Dilworth, 1950) 

For any finite poset P , M(P ) = m(P ). 

There’s also a dual version of this theorem: 

Theorem 9 (Minsky, 1971) 

The statement is also true if you flip the words “chain” and “antichain” in Dilworth’s theorem. 

In fact, there’s a generalization of this duality. 

Definition 10 

Given a poset P , define ` k to be the maximum size of a union of k (not necessarily disjoint, not necessarily saturated) 

antichains in P . For example, ` 1 is M(P ), the maximum number of elements in an anti-chain. Similarly, define mk to 

be the maximum size of a union of k-chains in P . 

Theorem 11 (Greene, 1976) 

Define λ(P ) = (` 1, ` 2 − ` 1, · · · ), and define µ(P ) = (m1, m2 − m1, · · · ). Then λ and µ are both partitions of n that 

are weakly decreasing, and they are conjugates: their Young diagrams are transposes of each other. 

For example, consider the following poset: 

Here, we can cover 2, 4, 5 elements with 1, 2, 3 antichains, so 

λ = (2, 4 − 2, 5 − 4) = (2, 2, 1) =⇒ 
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Meanwhile, we can cover 3, 5 elements with 1, 2 chains, so 

µ = (3, 5 − 3) = (3, 2) =⇒ 

So Dilworth’s theorem just says that the first row of λ is the same as the first column of µ, and Minsky says the same 

thing with row and column swapped! 

But remember the Schensted correspondence: the shape λ of a Young diagram tells us something about increasing 

subsequences in permutations. Well, we can make a poset out of permutations such that increasing subsequences are 

chains, and decreasing subsequences are antichains! 
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