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ROSE WONG 

Abstract. In this paper, we will present problems involving av­
erage values of arithmetic functions. The arithmetic functions we 
discuss are: (1)the number of representations of natural numbers 
as a sum of two squares and (2)as a sum of three squares, (3)the 
number of decompositions of natural numbers into sums of con­
secutive primes, (4)the number of primitive pythagorean triangles 
with a hypotenuse of a given length, and (5)the number of divisors 
of natural numbers. 

1. Introduction 

An arithmetic function is defined to be a function f(n), defined for 
n ∈ N, which maps to a complex number such that f: N C. Exam­→
ples of arithmetic functions include: the number of primes less than a 
given number n, the number of divisors of n, and the number of ways 
n can be represented as a sum of two squares. While the behavior of 
values of arithmetic functions are hard to predict, it is easier to analyze 
the behavior of the averages of arithmetic functions which we define 
as: 

f(1) + ... + f(n)
lim = L 

n→∞ n 
where L the average value of f(n). In this paper, we will examine 

averages of several different arithmetic functions. 

2. Average number of representations of a natural 
number as a sum of two squares 

Let r(n) be the number of representations of n as a sum of two 
squares 

2 2 n = x + y . 

Theorem 2.1. The average number of representations of a natural 
number as a sum of two squares is π. That is, 
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r(1) + r(2) + ... + r(n)
lim = π. 

n→∞ n 

Proof. For a fixed n, let 

R(n) = r(1) + ... + r(n) 

We interpret r(n) to be the number of lattice points (points with 
integer coordinates) on the circle x2 + y2 = n. R(n) is the number of 
lattice points in the disc x2 + y2 n except for the origin. ≤

If we place a unit square (centered on the lattice point with sides 
parallel to the coordinate axes) on each lattice point covered by the 
disk, the total area of these squares is 1+R(n), because R(n) does not 
include the origin. 

This is not exactly the area of the disk, as some squares go beyond 
the disk’s boundary and some areas of the circle are not covered by 
any square. However, we can find a circle that circumscribes all the 
squares and a circle that is inscribed by all the squares. These will be 
the bounding outer and inner circles, respectively. 

1The radius of the outer circle is 
√

n + √
2 
, because the greatest dis­

tance from the origin (0,0) to an outermost lattice point is 
√

n and the 
greatest distance from that lattice point to the edge of its corresponding 
unit square is √1

2 
. 

Hence, the area of the outter circle is larger than the area of the 
squares. 

1 + R(n) < π(
√

n + √1
2
)2 . 

By a similar argument, the area of the inner circle is less than the 
area of the squares. 

1 + R(n) > π(
√

n − √1
2
)2 

We can simplify the inequalities using the fact that π
√

2 < 5 and 
0 < π 

2 − 1 < 
√

n (n = 1, 2, 3, ...). Therefore, 

R(n) < π(
√

n + √1
2
)2 − 1 = πn + π

√
2
√

n + 
π 

2 
− 1 < πn + 6

√
n 

and 

)2R(n) > π(
√

n − √1
2

− 1 = πn − π
√

2
√

n + 
π 

2 
− 1 > πn − 6

√
n. 

It follows that 

πn − 6
√

n < R(n) < πn + 6
√

n, 
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which is the same as 

|R(n) − πn| < 6
√

n. 

If we divide by n, we get 

R(n) 6 | 
n 

− π| < √
n

. 

Taking the limit as n → ∞, we have R(n)/n π and the proof is →
complete. � 

3. Average Number of Representations of a Natural 
Number as a sum of three squares 

We will now extend the previous problem, that is, we will find the 
average number of representations of a natural number as a sum of 
three squares. Again, we will use geometry with integer lattice points 
to approach this problem. 

Let f(n) denote the number of integral solutions of 

2 2 2 x + y + z = n. 

Theorem 3.1. The average number of representations of a natural 
number as a sum of three squares is 4

3 π. 

f(1) + f(2) + ... + f(n) 4 
lim = π 

n→∞ n3/2 3 

Proof. For a fixed n, let 

F (n) = f(1) + ... + f(n). 

We interpret f(n) to be the number of lattice points on the sphere 
x2 + y2 + z2 = n, so F (n) to be the number of lattice points in the 
sphere x2 + y2 + z2 n except for the origin. If we place a unit cube ≤
on each lattice point covered in the sphere, the total volume of these 
cubes is 1 + F (n). 

We want to find a sphere that encloses all of the cubes and a sphere 
that is inscribed inside the cubes. The radius of the outer sphere is √

n + 
√

2
3 . Since the greatest distance between outermost lattice point 

and the edge of its corresponding cube is (1
2 )

2 + (1
2 )

2 + (1
2 )

2 = 
√

2
3 . 

Similarly, the radius of the inner sphere is 
√

n − 
√

3 .
2 

Comparing the volumes, we have 

)31 + R(n) < 
4 
π(
√

n + 

√
3 

3 2 
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and 

1 + R(n) > 
4 
π(
√

n −
√

3
)3 . 

3 2

Expanding the inequalities out, we have


R(n) < (
4 
πn3/2 + 3π

√
n − 1) + (2

√
3πn + 

√
3 
π)

3 2 
and 

R(n) > (
4 
πn3/2 + 3π

√
n − 1) − (2

√
3πn + 

√
3 
π). 

3 2


Using the fact that 2
√

3π < 11 and 
√

2
3 π < 3, we have


|R(n) −
3

4 
πn3/2 − 3π

√
n + 1)| < 11n − 3. 

Dividing by n3/2 gives 

R(n) 4 3π 1 11 3 |
n3/2 

−
3 
π − 

n 
+ 

n3/2 
)| < √

n 
−

n3/2 
. 

Taking the limit as n → ∞, we have R(n) 4 π and the proof is 
n3/2 → 

3 
complete. � 

4. Average value of number of decompositions of a 
natural number n into a sum of consecutive primes 

Let f(n) be the number of decompositions of a natural number n 
into a sum of one or more consecutive prime numbers. For example, 
f(395) = 2 because 

395 = 127 + 131 + 137 = 71 + 73 + 79 + 83 + 89. 

Theorem 4.1. The average number of decompositions of a natural 
number into a sum of one or more consecutive prime numbers is log 2. 
[1] 

f(1) + ... + f(n)
lim = log 2 

n→∞ n 

Proof. Let P be a sequence of consecutive primes: p1 < p2 < p3 < ... 
Every set of consecutive primes whose sum is less than or equal to x 
contributes 1 to the sum f(1)+f(2)+ ... +f(n). The number of sets of 
r primes that satisfy the condition is at most π(x

r 
) and at least π(x

r 
)−r. 

Therefore, we have 

k k 
� x � x 

(π( ) − r) ≤ f(1) + f(2) + ... + f(x) ≤ (π( )), 
r r 

r=1 r=1 
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where k is determined by


p1 + p2 + ... + pk ≤ x < p1 + p2 + ... + pk+1


Using the above inequality and pr ≍ r log r we get


x 
k ≍ 

log x 

This implies that 
�k r = O(x). If we can show that 

�k (π(x)) ∼r=1 r=1 r 
x log 2, it will follow that f(1) + f(2) + ... + f(x) ∼ x log 2 

Using the above relationship and the prime number theorem, we have 

k k � k 
� x � x x 

r=1 

(π( 
r 
)) ∼ 

r=1 

( 
r log x/r

) ∼ 
1 r log x/r 

dr = [−x log(log x/r)]1 
k 

x 
= x(log log x − log log ) ∼ x(log log x − log log x log x) ∼ x log 2. 

k

Notation explanation: Let f and g be functions of x. The notation 
f ≍ g denotes that f(x)/g(x) is bounded above and below by posi­
tive numbers for large values of x. The notation f = O(g) denotes 
that ∃c such that f(x) cg(x). The notation f ∼ g denotes that 

f(x) 
| | ≤

limx→∞, 
g(x) = 1 

5. Average value of primitive pythagorean triangles 
with hypotenuse equal to n 

Let P (n) be the number of primitive Pythagorean triangles with 
hypotenuse equal to n. For example, P(5)=1 and and P(65)=2 because 

32 + 42 = 52 , 

332 + 562 = 632 + 162 = 652 

We would like to determine whether the average value of P (n) con­
verges, and if so, to what value. That is, 

P (1) + ... + P (n)
lim = K 

n→∞ n 

Rather than approaching this problem through mathematical argu­
ments, we will use computer computations to infer a value. For each 
value of n from 1 to 1000, we generate and graph the average values 
up to and including n. Looking at Figure 1, we see that the average 
values (measured on the vertical axis) oscillate, but as n → ∞, the 
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Figure 1. Average P(n) for n=[1,1000] 

average values level off. We can conjecture that the limit as of n → ∞
the average value is: 

P (1) + ... + P (n)
lim = 0.159. 

n→∞ n 

6. Average value of divisors of a natural numbers 

Let d(n) be the number of divisors of the natural number n. We will 
show that 

Theorem 6.1. The average value of the number of divisors of natural 
numbers grows like log n. 

d(1) + d(2) + ... + d(n) ∼ log n 
n 

Proof. Let k be a fixed integer. If we list the multiples of k less than 
or equal to n: 

n 
k, 2k, 3k, ...[ ]k, 

k
we find that there are [n

k
] multiples, where [ ] denotes the floor function. 

Each of those multiples contributes 1 to the sum d(1) + ... + d(n). 
If we examine multiples of all integers k ≤ n, it follows that summing 

over k gives 

n 
� n 

[ ] = d(1) + ... + d(n)
k

k=1 
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Now, we want to prove that 
n 
k=1[

n ]
lim k = 1 

n→∞ n log n 

First, we establish the relationship: 
n n n 

k 
− 1 < [

k
] ≤

k
. 

Summing over k gives: 
n n n 

� n � n � n 
(
k 
− 1) < [ ] ≤ . 

k k 
k=1 k=1 k=1 

We then factor out n to get: 
n 

� 1 1 
n 

� n 
n 

� 1 
n (

k 
−

n 
) < [

k
] ≤ n

k 
k=1 k=1 k=1 

The first and last term in the above inequality can be rewritten as 
the integrals n 

� 
1 
n
(

k 
1 −

n
1 ) dk and n 

� 
1 
n

k 
1 dk. 

Integrating gives 
n 

� n 
n log n − n + 1 < [ ] ≤ n log n. 

k
k=1 

So taking n → ∞, we have 
n [n ]

lim k=1 k = 1. 
n→∞ n log n 

And so, 
d(1) + d(2) + ... + d(n) ∼ log n. 

n 
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