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Introduction

“Twin Prime” — Paul Stackel, 1880s

{p, p+2} equivalently, {6n+1, 6n-1}:
6x + 0 =/= prime = 6X
6x +1 = prime
6X + 2 =/=prime = 2(3x+1)
6x + 3 =/=prime = 3(2x +1)
6X + 4 =/=prime = 2(3X +2)
6Xx+5 = prime=6y-1



The Prime Counting Function and the
Twin Prime Constant

Twin Prime Counting Function:
Prime Counting Function

In(In(z)),
n( 11[;;)]1”

7o (1) < eIl 14+ 0
2(#) = ¢ 3(111(;?]}2[ + O In(x)

Formulated by Mertens

Twin Prime Constant

L= T0- ot o) o, [
[l 0p—1) o(z) ~ 2115 | mE

Formulated by Hardy and Littlewood



Mertens’ Theorems

Mertens Theorem 1:

For any real number x = 1,

The function f(t) = In($) is decreasing on the interval [1,x], so

Y (%)< ln(:r)—l—/ In(Z)dt
n 1 t

1<n<z

We can rewrite the right-hand side of the inequality as the following:

In(x) —|—] ln(%]dt = rlIn(x) —/ In(t)dt.
1 : 1



Similarly, we can rewrite this:

xln(z) — / In(t)dt =zIn(z) — (zln(z) —x+1) < z.
1

Mertens’ Second Theorem

For Mertens’ second theorem, we introduce the Von Mangoldt’s function, A(n),
where

m

A(n) =In(p) if n = p™ is a prime power, and zero otherwise,

Then the psi function of the prime number theorem is defined as follows

U(r)= >  A(m).

l1<m<uxr



Mertens Theorem 2:
For any real number x = 1,

—~ n
Proof:
Let N = [z]. Then
- N
< Y= N - n) = zlnl(z) — In(N! ) . .
0 < ;ln{n) N In(x) ;ln(n) rin(z) — In(N!) 4+ O(In(zx)) < =

In(N!) = zln(z) + O(x).

Let v,(n) denote the highest power of p, a prime, that divides n.



In(N1) = ) v,(N)In(p)

p<N

We can rewrite this as a single summation, by combining the limits on p and k:

[Ty ] N
In(N!) Z Z ‘;L]lﬂ
p=<N k=1
i
In(z!) = Z[E]ﬁ(”)
n<mr



In(z!) = (% + O(1))A(n).

n<umr

We can distribute this term. forming two sums, one in the error term:

In(x!) == Z ﬁSI) + O(Z A(n)).

n<r n=r

Now we can substitute in the Psi function defined earlier:

In(z!) == Z ﬁ:l) + O(U(x)).

nwr

Since the Psi function is of the same order as a linear function in x. we can
replace it in the error term, obtaining the following:

In(z!) = IZ ﬂ:l) + O(x).

n<r

Therefore.

32 4 0) = 2lu(e) + O()

n<mr

S Aln) _ In(z) + O(1)




Mertens Theorem 3:

For any real number r = 1,

—~ P
psa
Proof:
From the previous theorem,
A(n In
0 < (n) Z (p)
n — P
n=mr p=rT
o
<> In(p)Y — <
p<z k=2 p




It then follows from the previous theorem that

In(p) A(n) o ‘
Z p _2 - + O(1) = In(z) + O(1).

pP<T nwr

Mertens’ Theorem 4:

There exists a constant by > 0 such that

1 : 1 u
Z 5 = In(In(z)) + b1 + OLm),I > 2.

PEx

This shows that the sum of reciprocals of primes diverge, whereas
the reciprocals of twin primes converge



We can write

> o=y B = 3 s

n(p)

p{f p<E n=T

where u(n) = IHT it n = p, and 0 otherwise, and f(f) = TGR

‘ o 1
Let  Ult)=> uln)=>_ 2P) () + g(t)

n<t p=t p

Then U(t) =0 for t < 2 and g(t) = O(1) by our assumption




1 1 ; ,
ZP? = Z u(n)f(n) = ) —|—/2 f()dU (t)

p=T n<mr

Integrating by parts, we obtain the following:

5+ | FOAU ) = @)U (@) - / U (1) = m{ﬁ@f@) - /2 U(t) £ (t)dr.

Now we can simplify the term outside the integral, and substitute in for U(t):

%Jr /: f(t)dU(t) =1+ O(ln?.'r) )+ /: l%&;;gﬂﬁ.

We can split the integral in order to simplify the result:

I Y A > g(t) = g(t) 1
3+, 10w = [ g [ et | maartt O




Now we can evaluate two of the integrals:

/' 1 dH/" g(1) dt = In(In(z)) — In(In(2))
9 2

tIn(t) t(In(t))?

Finally, we can simplify this result in terms of a variable by:

ql(t)

5 5 " o - --L. - 5 — 5 ‘-\. )
In(In(x)) 1171(111[\2))—1—‘[‘2 H(In(?))2 d‘t—l—l—I—OLln(m) In(In(x))+b;4+C (lﬂL.LJ)
where - (
1 S ) git)
by =1—In(In(2)) —|—f2 t(ln(t)]ﬂdt'

Now we not only know that the reciprocals of
primes diverge, but that they diverge like the
function In(In(x)).



Brun’s Conjecture:

Let py.pa. ... be the sequence of prime numbers p such that p+ 2 is also prime.

Then

o0

Z(1+ 1 J—(1+1)+(1+1)+(1+1)+ < o0
n=1 p:r?, _pn_'_g N 3 5 5 T 11 13 (
Pn Pn
AT ; L - n = 1 {—E—
2() << T for all x > 2. 2(Pr) o)) = {am)?

for n > 2. Then

< =
Pn n(ln(n))z
It follows that the series defined above is convergent:

e ]

Zi{1+2—{:{: +Z

-3
n=1 Pr n= Epn n= 3

m|m



mo(r) << —=— for all =z > 2.
(In(z)) 3

(This result, which we assumed in the last theorem, actually has an
involved proof using the Brun Sieve technique)

Fun Exercise: How many primes are in an interval?

We can first evaluate this by using Euler’s
expression for the prime counting function.

Tr—+ exr T . r
In(z)+1In(l+¢€) In(z) " Llll(fj

m(x + ex) — w(x) ).



We can rewrite the right-hand side as

e PR

In(z) + Ol In(x)

Then if we let e = 1,

This does not mean that the number of primes in an interval
of length n is equal to the number of primes in the sequential
interval of length n. Instead, it means that

m(2x) — 2m(x) = O(w(zx))



Conclusion

The infinitude of twin primes has not been proven, but current
work by Dan Goldston and Cem Yilidrim is focused on a
formula for the interval between two primes:

A = lim inf p”-"l, P _ 1
n—oo  In(pp)
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