
  

PRACTICE HOUR TEST (Throughout, µ denotes Lebesgue measure on R.) 

1. (20 pts) If J is a finite union of bounded intervals, define `(J) as the length of J . 

a) Give a definition of Lebesgue outer measure µ⇤ on R in terms of `. 

b) Prove directly from this definition that µ⇤([0, 1]) = 1. Use without proof that ` is finitely 
subadditive and finitely additive on finite unions of intervals. You may not, however, use 
the fact that ` is countably subadditive or countably additive. 

2. (20 pts) Deduce the dominated convergence theorem from Fatou’s lemma. (Your answer 
must include a careful statement of both the theorem and the lemma.) 

3. 

a) (10 pts) Show that every Cauchy sequence in L1(I, µ) has a subsequence that converges 
pointwise almost everywhere. 

b) (6 pts) Find a Cauchy sequence as in part (a) that does not converge pointwise almost 
everywhere. 

4. (16 pts) Decide if the following statements true or false and give a reason if true and 
a counterexample if false. (4 points for each correct answer; 4 points for the reason or 
counterexample.) As in all parts of the test, µ denotes Lebesgue measure on R. 
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b) (T/F) If f(x, y) � 0 is measurable on R⇥R, and f(x, y)dµ(x) dµ(y) < 1, then 
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5. (16 pts) Let f
n be a sequence of measurable functions on [0, 1] such that 0  f

n

(x)  1. 
Find the relationship between 

1 1Z Z 
lim sup f

n

(x) dµ(x) and lim sup f
n

(x) dµ(x), 
n!1 n!10 0 

In other words, decide if they are equal or if one is necessarily less than or equal to the other. 
Prove your answer and give an example if they can be unequal. 

6. (12 pts) Show that for all f 2 L1(R, µ), 
Z 

lim |f(x) - f(x + t)|dµ(x) = 0  
t!0 R 

One way to prove this (not the fastest) is to start with 1
E . 
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