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116 LECTURE NOTES FOR 18.102, SPRING 2009 

Lecture 20. Thursday, April 23: Spectral theorem for compact 
self-adjoint operators 

Let A ∈ K(H) be a compact operator on a separable Hilbert space. We know of 
course, even without assuming that A is compact, that 

(20.1) Nul(A) ⊂ H 

is a closed subspace, so Nul(A)⊥ is a Hilbert space – although it could be finite-
dimensional (or even 0-dimensional in the uninteresting case that A = 0). 

Theorem 15. If A ∈ K(H) is a self-adjoint, compact operator on a separable 
Hilbert space, so A∗ = A, then null(A)⊥ has an orthonormal basis consisting of 
eigenfunctions of A, uj such that 

(20.2) Auj = λj uj , λj ∈ R \ {0}, 
arranged so that |λj | is a non-increasing sequence satisfying λj → 0 as j →∞ (in 
case Nul(A)⊥ is finite dimensional, this sequence is finite). 

Before going to the proof, let’s notice some useful conclusions. One is called 
‘Fredholm’s alternative’. 

Corollary 4. If A ∈ K(H) is a compact self-adjoint operator on a separable Hilbert 
space then the equation 

(20.3) u − Au = f 

either has a unique solution for each f ∈ H or else there is a non-trivial finite 
dimensional space of solutions to 

(20.4) u − Au = 0 

and then (20.3) has a solution if and only if f is orthogonal to all these solutions. 

Proof. This is just saying that the null space of Id −A is a complement to the range 
– which is closed. So, either Id −A is invertible or if not then the range is precisely 
the orthocomplement of Nul(Id −A). You might say there is not much alternative 
from this point of view, since it just says the range is always the orthocomplement 
of the null space. � 

Let me separate off the heart of the argument from the bookkeeping. 

Lemma 14. If A ∈ K(H) is a self-adjoint compact operator on a separable (possibly 
finite-dimensional) Hilbert space then 

(20.5) F (u) = (Au, u), F : {u ∈ H; �u� = 1} −→ R 

is a continuous function on the unit sphere which attains its supremum and infi­
mum. Furthermore, if the maximum or minimum is non-zero it is attained at an 
eivenvector of A with this as eigenvalue. 

Proof. So, this is just like function in finite dimensions, except that it is not. First 
observe that F is real-valued, which follows from the self-adjointness of A since 

(20.6) (Au, u) = (u,Au) = (A∗u, u) = (Au, u).


Moreover, continuity of F follows from continuity of A and of the inner product so


(20.7) |F (u) − F (u�)| ≤ |(Au, u) − (Au, u�)| + |(Au, u�) − (Au�, u�)| ≤ 2�A��u − u�� 
since both u and u� have norm one. 
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If we were in finite dimensions this finishes the proof, since the sphere is then 
compact and a continuous function on a compact set attains its sup and inf. In the 
general case we need to use the compactness of A. Certainly F is bounded, 

(20.8) F (u) sup (Au, u)| | ≤ 
�u�=1 

| | ≤ �A�. 

F (u− inf F. The weak compactness of the unit sphere means that we can pass n

nsup F and another u−

to a subsequence in each case, and so assume that u± � u± converges weakly. n

Thus, there is a sequence u such that F (u ) such that + + →n n

) → 

Then, by the compactness of A, Au±

then we can write 
n Au± converges strongly, i.e. in norm. But → 

(20.9) |F (u±n ) − F (u±)| ≤ 

(A(u±n

|(A(u±n

n

− u±), u±n
) ) ( (± ± ± ±, A− u , u u un

) n(Au±, u±

− u±))

− u±)+| | |
2 ±Au≤ � n

) are respectively the sup and inf of F. Thus 

− Au±�+= | | | | 

to deduce that F (u±) lim F (u±

indeed, as in the finite dimensional case, the sup and inf are attained, as in max 
and min. 

So, suppose that Λ+ = sup F > 0. Then for any v ∈ H with v ⊥ u+ the curve 

n

(20.10) Lv : (−π, π) � θ �−→ cos θu+ + sin θv 

lies in the unit sphere. Computing out 

(20.11) F (Lv(θ)) = 

(ALv(θ), Lv(θ)) = cos2 θF (u +) + 2 sin(2θ) Re(Au+ , v) + sin2(θ)F (v) 

we know that this function must take its maximum at θ = 0. The derivative there 
(it is certainly continuously differentiable on (−π, π)) is Re(Au+, v) which must 
therefore vanish. The same is true for iv in place of v so in fact 

(20.12) (Au+ , v) = 0 ∀ v ⊥ u + , �v� = 1. 

Taking the span of these v’s it follows that (Au+, v) = 0 for all v ⊥ u+ so A+u 
must be a multiple of u+ itself. Inserting this into the definition of F it follows 
that Au+ = Λ+u+ is an eigenvector with eigenvalue Λ+ = sup F. 

The same argument applies to inf F if it is negative, for instance by replacing A 
by −A. This completes the proof of the Lemma. � 

Proof of Theorem 15. First consider the Hilbert space H0 = Nul(A)⊥ ⊂ H. Then 
A maps H0 into itself, since 

(20.13) (Au, v) = (u,Av) = 0 ∀ u ∈ H0, v ∈ Nul(A) =⇒ Au ∈ H0. 

Moreover, A0, which is A restricted to H0, is again a compact self-adjoint operator 
– where the compactness follows from the fact that A(B(0, 1)) for B(0, 1) ⊂ H0 is 
smaller than (actually of course equal to) the whole image of the unit ball. 

Thus we can apply the Lemma above to A0, with quadratic form F0, and find 
an eigenvector. Let’s agree to take the one associated to sup FA0 unless supA0 

< 
− inf F0 in which case we take one associated to the inf . Now, what can go wrong 
here? Nothing except if F0 ≡ 0. However, 

Lemma 15. In general for a self-adjoint operator on a Hilbert space 

(20.14) F ≡ 0 ⇐⇒ A ≡ 0. 

= 



118 LECTURE NOTES FOR 18.102, SPRING 2009 

Proof. In principle F is only defined on the unit ball, but of course we can recover 
(Au, u) for all u ∈ H from it. Namely, if u = 0 it vanishes of course and otherwise 

(20.15) (Au, u) = �u�2F ( 
u 

). 
�u� 

Thenxs we can recover A by ‘polarization’. Since 

(20.16) 2(Au, v) = (A(u + v), u + v) + i(A(u + iv, u + iv). 

Thus if F ≡ 0 then A ≡ 0. � 

So, we know that we can find an eigenvector unless A ≡ 0 which would imply 
Nul(A) = H. Now we proceed by induction. Suppose we have found N mutually or­
thogonal eigenvectors ej for A all with norm 1 and eigenvectors λj – an orthonormal 
set of eigenvectors and all in H0. Then we consider 

(20.17) HN = {u ∈ H0 = Nul(A)⊥; (u, ej ) = 0, j = 1, . . . , N}. 
From the argument above, A maps HN into itself, since 

(20.18) (Au, ej ) = (u,Aej ) = λj (u, ej ) = 0 if u ∈ HN = ⇒ Au ∈ HN . 

Moreover this restricted operator is self-adjoint and compact on HN as before so 
we can again find an eigenvector, with eigenvalue either the max of min of the new 
F for HN . The only problem arises if F ≡ 0 at some stage, but then A ≡ 0 on 
HN and since HN ⊥ Nul(A) this implies HN = {0} so H0 must have been finite 
dimensional. 

Thus, either H0 is finite dimensional or we can grind out an infinite orthonormal 
sequence ei of eigenvectors of A in H0 with the corresponding sequence of eigen­
values such that |λi| is non-increasing – since the successive FN ’s are restrictions 
of the previous ones the max and min are getting closer to (or at least no further 
from) 0. In fact it follows that λj → 0 in this case, since otherwise there must be 
one eigenvalue λ =� 0 for which the space of eigenvectors is infinte dimensional – 
ruled out by the fact that λ(Id −λ−1A) has finite dimensional null space as shown 
last time. 

Finally then, why must this orthonormal sequence be an orthonormal basis of 
H0? If not, then we can form the closure of the span of the ei we have constructed, 
H�, and its orthocomplement in H0 – which would have to be non-trivial. However, 
as before F restricts to this space to be F � for the restriction of A� to it, which is 
again a compact self-adjoint operator. So, if F � is not identically zero we can again 
construct an eigenfunction, with non-zero eigenvalue, which contracdicts the fact 
the we are always choosing a largest eigenvalue, in absolute value at least. Thus in 
fact F � ≡ 0 so A� ≡ 0 and the eigenvectors form and orthonormal basis of Nul(A)⊥. 
This completes the proof of the theorem. � 




