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Problem Sets Related to Lectures and Readings 

LEC 
# 

TITLE Reading Assignment 

The Column Space of A Contains 
All Vectors Ax 

Section 
I.1

Problem	Set I.1 

Multiplying and Factoring 
Matrices 

Section 
I.2

Problem	Set I.2 

Orthonormal Columns In Q Give 
Q’Q= I 

Section 
I.5

Problem	Set I.5 

Eigenvalues and Eigenvectors Section 
I.6

Problem	Set I.6 

Positive	 Definite	 and 
Semidefinite	 Matrices 

Section 
I.7

Problem	Set I.7 

Singular Value	 Decomposition 
(SVD)	 

Section 
I.8

Problem	Set I.8 

Eckart-Young: The Closest Rank k 
Matrix to A 

Section 
I.9

Problem	Set I.9 

Norms of Vectors and Matrices Section 
I.11

Problem	Set I.11 

Four Ways to Solve	 Least Squares 
Problems 

Section 
II.2

Problem	Set II.2	 Problems 2, 8, 9 

Survey of Difficulties with Ax = b 
Intro 	Ch. 

2 
Problem	Set II.2	 Problems 12 and 17 

Minimizing ‖x‖	 Subject to Ax = b 
Section 
I.11

Problem	Set I.11	 Problem	6 
Problem	Set II.2	 Problem	10 

Computing Eigenvalues and	
Singular Values 

Section 
II.1

Problem	Set II.1 

Randomized	 Matrix Manipulation 
Section 
II.4

Problem	Set II.4 

Low Rank	 Changes in A and Its 
Inverse 

Section 
III.1

Problem	Set III.1 

Matrices A(t) depending on	 t /	
Derivative = dA/dt 

Sections 
III.1–2

Problem	Set III.2	 Problems 1, 2, 5 

Derivatives of Inverse and 
Singular Values 

Sections 
III.1–2

Problem	Set III.2	 Problems 3, 12 

Rapidly Decreasing Singular 
Values 

Section 
III.3

Problem	Set III.3 

Counting Parameters in	 SVD, LU, 
QR, Saddle Points 

Append., 
Sec. III.2 

Problem	Set III.2 

Saddle	 Points Continued / 
Maxmin Principle 

Sections 
III.2, 	V.1

Problem	Set V.1	 Problems 3, 8 

Definitions and Inequalities Sections 
V.1, V.3

Problem	Set V.1	 Problems 10. 12 
Problem	Set V.3	 Problem	3 
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21 
Minimizing a Function Step by 
Step 

Sections 
VI.1, VI.4

Problem	Set VI.1 

22 
Gradient Descent: Downhill to a 
Minimum 

Section 
VI.4

Problem	Set VI.4	Problems 1, 6 

23 
Accelerating Gradient Descent 
(Use Momentum) 

Section 
VI.4)

Problem	Set VI.4	 Problem	5 

24 
Linear Programming	 and Two-
Person Games 

Sections 
VI.2–VI.3

Problem	Set VI.2	 Problem	1 
Problem Set VI.3	 Problems 2, 5 

25 Stochastic Gradient Descent Section 
VI.5

Problem	Set VI.5 

26 
Structure	 of Neural Nets for Deep 
Learning 

Section 
VII.1

Problem	Set VII.1 

27 
Backpropagation	 to	 Find	 
Derivative of the Learning 
Function 

Section 
VII.2

Problem	Set VII.2 

28 Computing in	 Class Section 
VII.2 and
Appendix

3 

[No Problems Assigned] 

29 [No Video Recorded] No 
Readings 

[No Problems Assigned] 

30 
Completing a Rank-One Matrix / 
Circulants! 

Sections 
IV.8, 	IV.2

Problem	Set IV.8 
Problem	Set	IV.2 

31 
Eigenvectors of Circulant 
Matrices: Fourier Matrix 

Section 
IV.2

Problem	Set IV.2 

32 
ImageNet is a 	CNN / 	The 
Convolution	 Rule 

Section 
IV.2

Problem	Set IV.2 

33 
Neural Nets and the Learning 
Function 

Sections 
VII.1,
IV.10

Problem	Set VII.1 
Problem	Set IV.10 

34 
Distance Matrices / Procrustes 
Problem / First Project 

Sections 
IV.9,
IV.10

Problem	Set IV.9 

35 
Finding Clusters in Graphs / 
Second Project: Handwriting 

Sections 
IV.6–IV.7

Problem	Set IV.6 

36 
Third Project / Alan Edelman and 
Julia Language 

Sections 
III.3, 	VII.2

[No Problems Assigned] 

2



Problems for Lecture 1 (from textbook Section I.1)

1 Give an example where a combination of three nonzero vectors in R4 is the zero 
vector. Then write your example in the form Ax = 0. What are the shapes of A and 
x and 0 ? 

4 Suppose A is the 3 by 3 matrix ones(3, 3) of all ones. Find two independent vec-
tors x and y that solve Ax = 0 and Ay = 0. Write that first equation Ax = 0 
(with numbers) as a combination of the columns of A. Why don’t I ask for a third 
independent vector with Az = 0 ? 

9 Suppose the column space of an m by n matrix is all of R3 . What can you say about 
m ? What can you say about n ? What can you say about the rank r ? 

� � 
0 A

18 If A = CR, what are the CR factors of the matrix ? 
0 A 

3



Problems for Lecture 2 (from textbook Section I.2)
2 Suppose a and b are column vectors with components a1, . . . , am and b1, . . . , bp. 

Can you multiply a times bT (yes or no) ? What is the shape of the answer abT ? 
What number is in row i, column j of abT ? What can you say about aaT ? 

6 If A has columns a1, a2, a3 and B = I is the identity matrix, what are the rank one 
matrices a1b

� 

1 and a2b
� 

2 and a3b
� 

3 ? They should add to AI = A. 

4



Problems for Lecture 3 (from textbook Section I.5)
T2 Draw unit vectors u and v that are not orthogonal. Show that w = v − u(u v) is

orthogonal to u (and add w to your picture). 

4 Key property of every orthogonal matrix : ||Qx||2 = ||x||2 for every vector x.
TMore than this, show that (Qx)T(Qy) = x y for every vector x and y. So 

lengths and angles are not changed by Q. Computations with Q never overflow ! 

6 A permutation matrix has the same columns as the identity matrix (in some order). 
Explain why this permutation matrix and every permutation matrix is orthogonal : 

P = 
 

 
0 1 0 0 
0 0 1 0has orthonormal columns so P TP = and P −1 = . 
0 0 0 1 
1 0 0 0 

When a matrix is symmetric or orthogonal, it will have orthogonal eigenvectors. 
This is the most important source of orthogonal vectors in applied mathematics. 

5



Problems for Lecture 4 (from textbook Section I.6)

2 Compute the eigenvalues and eigenvectors of A and A−1 . Check the trace ! 
� � � � 
0 2 −1/2 1 

A−1A = and = . 
1 1 1/2 0 

A−1 has the eigenvectors as A. When A has eigenvalues λ1 and λ2, its inverse 
has eigenvalues . 

11 The eigenvalues of A equal the eigenvalues of AT . This is because det(A − λI) 
equals det(AT − λI). That is true because . Show by an example that the 
eigenvectors of A and AT are not the same. 

15 (a) Factor these two matrices into A = X�X−1:
� � � � 
1 2 1 1 

A = and A = . 
0 3 3 3 

(b) If A = X�X−1 then A3 = ( )( )( ) and A−1 = ( )( )( ).

6



Problems for Lecture 5 (from textbook Section I.7)
3 For which numbers b and c are these matrices positive definite? 

� � � � � � 
1 b 2 4 c b 

S = S = S = . 
b 9 4 c b c 

With the pivots in D and multiplier in L, factor each A into LDLT . 

14 Find the 3 by 3 matrix S and its pivots, rank, eigenvalues, and determinant: 
   

x1� � 
x1 x2 x3  S x2  = 4(x1 − x2 + 2x3)

2 .
x3

15 Compute the three upper left determinants of S to establish positive definiteness. 
Verify that their ratios give the second and third pivots. 

  
2 2 0 

 Pivots = ratios of determinants S = 2 5 3 .
0 3 8 

7



Problems for Lecture 6 (from textbook Section I.8)

1 A symmetric matrix S = ST has orthonormal eigenvectors v1 to vn. Then any 
vector x can be written as a combination x = c1v1 + · · · + cnvn. Explain these two
formulas : 

T 2 2 2 2 x x = c + · · · + c x TSx = λ1c + · · · + λnc .1 n 1 n 

� � 
3 4

6 Find the σ’s and v’s and u’s in the SVD for A = . Use equation (12). 
0 5 

8
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Problems for Lecture 7 (from textbook Section I.9)

Find a closest rank-1 approximation to these matrices (L2 or Frobenius norm) : 
  

3 0 0 � � � � 
0 3 2 1 

A =  0 2 0  A = A = 
2 0 1 2 

0 0 1 

10 If A is a 2 by 2 matrix with σ1 ≥ σ2 > 0, find ||A−1||2 and ||A−1||2 
F .

9



Problems for Lecture 8 (from textbook Section I.11)

1 Show directly this fact about ℓ1 and ℓ2 and ℓ1 vector norms : ||v||2 ≤ ||v||1 ||v||1.2 

7 A short proof of ||AB||F ≤ ||A||F ||B||F starts from multiplying rows times columns :

|(AB)ij |2 ≤ ||row i of A||2 ||column j of B||2 is the Cauchy-Schwarz inequality

Add up both sides over all i and j to show that ||AB||2 ≤ ||A||2 ||B||2 
F F F .

10



Problems for Lecture 9 (from textbook Section II.2)
2 Why do A and A+ have the same rank ? If A is square, do A and A+ have the same 

eigenvectors? What are the eigenvalues of A+ ? 
� � � � 
1 48 What multiple of a = should be subtracted from b = to make the result 
1 0 

A2 orthogonal to a? Sketch a figure to show a, b, and A2. 

9 Complete the Gram-Schmidt process in Problem 8 by computing q1 = a/kak and
q2 = A2/kA2k and factoring into QR: 

� � � � � � 
1 4 kak ? 
1 0 

= q1 q2 0 kA2k 
.

The backslash command A\b is engineered to make A block diagonal when possible.

11
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Problems for Lecture 10 (from textbook Introduction Chapter 2)
Problems 12 and 17 use four data points b = (0, 8, 8, 20) to bring out the key ideas. 

b = C + Dt 

��e2 

��p2 

�e1��p1 

�e3 
�p3 

�e4 

�
p4 

�b 

��������p = Ca1 + Da2 

error vector 

projection of b 

�a2 

�
a1 

Figure II.3: The closest line C + Dt in the t − b plane matches Ca1 + Da2 in R4 .

12 With b = 0, 8, 8, 20 at t = 0, 1, 3, 4, set up and solve the normal equations 
ATAxb = ATb. For the best straight line in Figure II.3a, find its four heights pi 

2 2 2 2and four errors ei. What is the minimum squared error E = e + e + e + e ?1 2 3 4 

T17 Project b = (0, 8, 8, 20) onto the line through a = (1, 1, 1, 1). Find xb = a Tb/a a 

and the projection p = xba. Check that e = b − p is perpendicular to a, and find the
shortest distance kek from b to the line through a. 

12



  

6 

10 

Problems for Lecture 11 (from textbook Section I.11)
Problem Set I.11 

The first page of I.11 shows unit balls for the ℓ1 and ℓ2 and ℓ1 norms. Those 
are the three sets of vectors v = (v1, v2) with ||v||1 ≤ 1, ||v||2 ≤ 1, ||v||1 ≤ 1.
Unit balls are always convex because of the triangle inequality for vector norms : 

wIf ||v|| ≤ 1 and ||w|| ≤ 1 show that || v + || ≤ 1.
2 2 

Problem Set II.2 
� � � � 

What multiple of a = 1

1
should be subtracted from b = 4

0
to make the result 

A2 orthogonal to a? Sketch a figure to show a, b, and A2. 

13



                
                   

                     

Problem for Lecture 12 (from textbook Section II.1)
These problems start with a bidiagonal n by n bac

T

kward difference matrix 
T

D = I − S. 
Two tridiagonal second difference matrices are DD and A = −S + 2I − S . The shift S 
has one nonzero subdiagonal Si,i−1 = 1 for i = 2, . . . , n. A has diagonals −1, 2, −1.

1 Show that DDT equals A except that 1 =6 2 in their (1, 1) entries. Similarly 
DTD = A except that 1 6= 2 in their (n, n) entries.

14



Problems for Lecture 13 (from textbook Section II.4)
1 Given positive numbers a1, . . . , an find positive numbers p1 . . . , pn so that 

2 2a a1 n p1 +· · ·+pn = 1 and V = +· · ·+ reaches its minimum (a1 +· · ·+an)
2 .

p1 pn 

The derivatives of L(p, λ) = V − λ(p1 + · · · + pn − 1) are zero as in equation (8).

4 If M = 1 1T is the n by n matrix of 1’s, prove that nI − M is positive semidefinite.
Problem 3 was the energy test. For Problem 4, find the eigenvalues of nI − M .

15



Problems for Lecture 14 (from textbook Section III.1)
T)−11 Another approach to (I − uv starts with the formula for a geometric series :

2 3 T(1 − x)−1 = 1+ x + x + x + · · · Apply that formula when x = uv = matrix :

T)−1 T T T T T T(I − uv = I + uv + uv uv + uv uv uv + · · ·
T T T T= I + u [1 + v u + v uv u + · · · ] v .

Tuv 
T T)−1Take x = v u to see I + . This is exactly equation (1) for (I − uv . 

1 − vTu 

T)−14 Problem 3 found the inverse matrix M−1 = (A − uv . In solving the equation
My = b, we compute only the solution y and not the whole inverse matrix M−1 . 
You can find y in two easy steps : 

TStep 1 Solve Ax = b and Az = u. Compute D = 1 − v z.
Tv x

Step 2 Then y = x + z is the solution to My = (A − uvT)y = b.
D 

Verify (A−uvT)y =b. We solved two equations using A, no equations using M .

16



Problems for Lecture 15 (from textbook Sections III.1-III.2)
T1 A unit vector u(t) describes a point moving around on the unit sphere u u = 1. 

Show that the velocity vector du/dt is orthogonal to the position : uT(du/dt) = 0. 

2 Suppose you add a positive semidefinite rank two matrix to S. What interlacing 
Tinequalities will connect the eigenvalues λ of S and α of S + uu + vvT ? 

5 Find the eigenvalues of A3 and A2 and A1. Show that they are interlacing : 
  � �1 −1 0 � �1 −1 A3 = −1 2 −1 A2 = A1 = 1 −1 2 

0 −1 1 

17



Problems for Lecture 16 (from textbook Sections III.1-III.2)
� � � � 

2 1 1 1
3 (a) Find the eigenvalues λ1(t) and λ2(t) of A = + t . 

1 0 1 1 

dλ dA 
T(b) At t = 0, find the eigenvectors of A(0) and verify = y x. 

dt dt 
(c) Check that the change A(t) − A(0) is positive semidefinite for t > 0. Then

verify the interlacing law λ1(t) ≥ λ1(0) ≥ λ2(t) ≥ λ2(0). 

12 If xTSx > 0 for all x =6 0 and C is invertible, why is (Cy)TS(Cy) also positive ? 
This shows again that if S has all positive eigenvalues, so does CTSC. 

18



Problems for Lecture 17 (from textbook Section III.3)
2 Show that the evil Hilbert matrix H passes the Sylvester test AH − HB = C

1 1 
Hij = A = diag (1, 3, . . . , 2n−1) B = −A C = ones(n)

i + j − 1 2 

6 If an invertible matrix X satisfies the Sylvester equation AX − XB = C,
find a Sylvester equation for X−1 . 

19



Problems for Lecture 18 (from textbook Section III.2)
4 S is a symmetric matrix with eigenvalues λ1 > λ2 > . . . > λn and eigenvectors 

q1, q2, . . . , q . Which i of those eigenvectors are a basis for an i-dimensional n 
Tsubspace Y with this property : The minimum of xTSx/x x for x in Y is λi. 

10 Show that this 2n × 2n KKT matrix H has n positive and n negative eigenvalues :

� � 
S positive definite S C 

H = 
C invertible CT 0 

The first n pivots from S are positive. The last n pivots come from −CTS−1C. 

20



Problems for Lecture 19 (from textbook Sections III.2 and V.1)
13 We know: of all integers are divisible by 3 and 1 of integers are divisible by 7.
3 7 

What fraction of integers will be divisible by 3 or 7 or both ? 

8 Equation (4) gave a second equivalent form for S2 (the variance using samples) : 

1 1 �� � � 
2S2 = sum of (xi − m)2 = sum of x − Nm2 .

N − 1 N − 1 i 

Verify the matching identity for the expected variance σ2 (using m = � pi xi) : 

2 � � 
˙2 2 2= sum of pi (xi − m) = sum of pi x − m .

i 

21



Problems for Lecture 20 (from textbook Section V.1)

10 Computer experiment : Find the average A1000000 of a million random 0-1 samples !� � √ 
What is your value of the standardized variable X = AN − 1 /2 N ?

2 
P R 

12 For any function f(x) the expected value is E[f ] = pi f(xi) or p(x) f(x) dx 
2(discrete or continuous probability). The function can be x or (x − m)2 or x . 

If the mean is E[x] = m and the variance is E[(x − m)2] = σ2 what is E[x2] ?

Problem for Lecture 20 (from textbook Section V.3) 

3 A fair coin flip has outcomes X = 0 and X = 1 with probabilities 1 and 1 . What 
2 2 

is the probability that X ≥ 2X ? Show that Markov’s inequality gives the exact
probability X/2 in this case. 

22



Problems for Lecture 21 (from textbook Sections VI.1 and VI.4)
1 When is the union of two circular discs a convex set ? Or two squares ? 

5 Suppose K is convex and F (x) = 1 for x in K and F (x) = 0 for x not in K. 
Is F a convex function ? What if the 0 and 1 are reversed ? 

23



Problems for Lecture 22 (from textbook Section VI.4)
1 For a 1 by 1 matrix in Example 3, the determinant is just det X = x11. 

Find the first and second derivatives of F (X) = − log(det X) = − log x11 for
x11 > 0. Sketch the graph of F = − log x to see that this function F is convex. 

6 What is the gradient descent equation xk+1 = xk − sk∇f(xk) for the least squares
1problem of minimizing f(x) = ||Ax − b||2 ?
2 

24



5 

Problem for Lecture 23 (from textbook Section VI.4)
Explain why projection onto a convex set K is a contraction in equation (24). 
Why is the distance ||x − y|| never increased when x and y are projected onto K ?

25



  Problem for Lecture 24 (from textbook Section VI.2)

1 1 2 21 Minimize F (x) = xTSx = x + 2x subject to ATx = x1 + 3x2 = b.1 22 2 

(a) What is the Lagrangian L(x, λ) for this problem ?

(b) What are the three equations “derivative of L = zero” ?
� � �(c) Solve those equations to find x = (x1, x ) and the multiplier λ� .2 

(d) Draw Figure VI.4 for this problem with constraint line tangent to cost circle.

(e) Verify that the derivative of the minimum cost is ∂F �/∂b = −λ� .

Problems for Lecture 24 (from textbook Section VI.3) 
2 Suppose the constraints are x1 + x2 + 2x3 = 4 and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Find the three corners of this triangle in R3 . Which corner minimizes the cost 
Tc x = 5x1 + 3x2 + 8x3 ? 

5 Find the optimal (minimizing) strategy for X to choose rows. Find the optimal 
(maximizing) strategy for Y to choose columns. What is the payoff from X to Y 

�at this optimal minimax point x , y� ? 
� � � � 

Payoff 1 2 1 4 
matrices 4 8 8 2 

26



Problem for Lecture 25 (from textbook Section VI.5)
21 Suppose we want to minimize F (x, y) = y + (y − x)2 . The actual minimum

�is F = 0 at (x , y�) = (0, 0). Find the gradient vector ∇F at the starting point 
1(x0, y0) = (1, 1). For full gradient descent (not stochastic) with step s = , where 
2 

is (x1, y1) ? 

27



Problems for Lecture 26 (from textbook Section VII.1)
4 Explain with words or show with graphs why each of these statements about 

Continuous Piecewise Linear functions (CPL functions) is true : 

M The maximum M(x, y) of two CPL functions F1(x, y) and F2(x, y) is CPL. 

S The sum S(x, y) of two CPL functions F1(x, y) and F2(x, y) is CPL. 

C If the one-variable functions y = F1(x) and z = F2(y) are CPL, 
so is the composition C(x) = z = (F2(F1(x)). 

Problem 7 uses the blue ball, orange ring example on playground.tensorflow.org 
with one hidden layer and activation by ReLU (not Tanh). When learning succeeds, 
a white polygon separates blue from orange in the figure that follows. 

7 Does learning succeed for N = 4 ? What is the count r(N, 2) of flat pieces in F (x) ? 
The white polygon shows where flat pieces in the graph of F (x) change sign as they 
go through the base plane z = 0. How many sides in the polygon ? 

28
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Problems for Lecture 27 (from textbook Section VII.2)

2 If A is an m by n matrix with m > n, is it faster to multiply A(ATA) or (AAT)A ? 

5 Draw a computational graph to compute the function f(x, y) = x3(x − y). Use the
graph to compute f(2, 3). 

29



  




Problem for Lecture 30 (from textbook Section IV.8)

3 For a connected graph with M edges and N nodes, what requirement on M and N 
comes from each of the words spanning tree ? 

Problem for Lecture 30 (from textbook Section IV.2) 
∗ 

1 Find c ∗ d and c d for c = (2, 1, 3) and d = (3, 1, 2). 

30



Problems for Lecture 31 (from textbook Section IV.2)
P P P 

3 If c ∗ d = e, why is ( ci)( di) = ( ei) ? Why was our check successful?˙ 

(1 + 2 + 3) (5 + 0 + 4) = (6) (9) = 54 = 5 + 10 + 19 + 8 + 12. 

5 What are the eigenvalues of the 4 by 4 circulant C = I + P + P 2 + P 3 ? Connect 
those eigenvalues to the discrete transform F c for c = (1, 1, 1, 1). For which three 

2 3real or complex numbers z is 1 + z + z + z = 0 ? 

31



Problem for Lecture 32 (from textbook Section IV.2)
4 Any two circulant matrices of the same size commute : CD = DC. They have 

the same eigenvectors qk (the columns of the Fourier matrix F ). Show that the 
eigenvalues λk(CD) are equal to λk(C) times λk (D). 

32



  Problem for Lecture 33 (from textbook Section VII.1)

5 How many weights and biases are in a network with m = N0 = 4 inputs in each 
feature vector v0 and N = 6 neurons on each of the 3 hidden layers ? How many 
activation functions (ReLU) are in this network, before the final output ? 

Problem for Lecture 33 (from textbook Section IV.10) 

2 ||x1 − x2||2 = 9 and ||x2 − x3||2 = 16 and ||x1 − x3||2 = 25 do satisfy the
triangle inequality 3 + 4 > 5. Construct G and find points x1, x2, x3 that match 
these distances. 

33



Problem for Lecture 34 (from textbook Sections IV.9 and IV.10)

1 FWhich orthogonal matrix Q minimizes ||X − Y Q||2 ? Use the solution Q = UV T 

above and also minimize as a function of θ (set the θ-derivative to zero) : 
� � � � � � 

1 2 1 0 cos θ − sin θ
X = Y = Q = 

2 1 0 1 sin θ cos θ 

34
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Problem for Lecture 35 (from textbook Sections IV.6-IV.7)
What are the Laplacian matrices for a triangle graph and a square graph ? 

35
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