Indefinite Integrals over Singularities

When computing fooo \/wdzimﬁ we had to take an extra step to avoid the integral

fol df. We'll now go back and discuss integration near singular points.

Integrals like fol d—;’ are known as indefinite integrals of the second type. Ex-

amples include:
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These integrals turn out to be fairly straightforward to calculate:
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However, you can get into trouble if you’re not careful. Consider the follow-
ing calculation:
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This is ridiculous! As we see from Figure 1, w% is always positive. The area

under the graph of y = w% between —1 and 1 is clearly greater than 2; in
particular it cannot be a negative number.

In fact, the area under the graph of y = T% between —1 and 1 is infinite, not
—2. The calculation above is nonsense.
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Figure 1: Graph of y = %2
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