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Trapezoidal Rule 
yo yn

Area ≈ Δx + y1 + y2 + ... + yn−1 + . 
2 2 
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Figure 1: Approximation by areas of trapezoids. 

The trapezoidal rule divides up the area under the graph into trapezoids 
(using segments of secant lines), rather than rectangles (using horizontal seg­
ments). As you can see from Figure 1, these diagonal lines come much closer to 
the curve than the tops of the rectangles used in the Riemann sum. 

Remember that the area of a trapezoid is the area of the base times its 
average height. When applying the trapezoidal rule, the base of a trapezoid 
has length Δx and its sides have heights yi−1 and yi; trapezoid i has area 
Δx yi−1 +y+i .2 
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y3+y4Figure 2: Area = 2 Δx. 

When we add up the areas of all the trapezoids under the curve, we get: 

yo + y1 y1 + y2 y2 + y3 yn−1 + yn
Area = Δx + + + ... + 
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= Δx + y1 + y2 + ... + yn−1 + . 
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Notice that the trapezoidal rule is the average of the left Riemann sum and the 
right Riemann sum; it gives a more symmetric treatment of the endpoints a and 
b than a Riemann sum does. 

This looks good and in fact it is much better than a Riemann sum; however, 
it’s still not very efficient. 
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