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CHAPTER 1: INTRODUCTION 
 

 
Substances respond to magnetic fields in varying degrees.  For instance, if we measure the force on a 
material in a magnetic field B, we get the following (B = 1.8 T): 
 
   Water    -22 dynes 
   Cu    -2.6 dynes 
   CuCl2     +280 dynes 
   InO2    +7500 dynes 
   Fe    +4x105 dynes 
 
Magnetic fields interact with one another, but they also induce magnetism in matter.  Force on a magnetic 
dipole 
 

dz
dBF µ=  

 
µ = magnetic dipole moment (for a current loop, ; I = current, r = radius of loop).   Ir 2πµ =
 
This helps understand the table above.  It implies that in a magnetic field, for most materials, 
 

B±∝µ . 
 

Thus, as B decreases, 
dz
dB

 decreases, µ decreases, and the force decreases by both terms. 

 
An applied magnetic field, B, induces a magnetic moment in material, but the direction of the magnetic 
moment depends on the type of material.  For instance, a diamagnetic material (e.g. water) is repelled in 
a magnetic field, implying that the direction of µ is opposite that of B.  Magnetic fields cause the orbital 
electrons to speed up or slow down depending on the orientation, or direction of the electron spins.  This 
induces a current (Lenz’s Law) such that the magnetic field of the induced current is opposite that of the 
applied field.  The resulting magnetic moment, µ, opposes B 
 

2

22

6
µ

cm
rne

e

B
=  

 
where n = number of electrons per gram, e is the elementary charge, and me is the mass of the electron.  
(Note: assume cancellation of the average orbital angular momentum). 
 
Paramagnetic materials, on the other hand, are attracted to a stronger magnetic field.  The magnetic 
moment aligns with the applied magnetic field (as a compass needle does).  Examples of paramagnetic 
materials includes atoms or molecules that posses an odd number of electrons so that the total spin of the 
system is not zero (e.g. organic free radicals, or nitric oxide, NO).  Transition elements such as 
manganese and gadolinium, and some metals are also paramagnetic. 
 
The net magnetization, M, ( )∑= µM  is a function of the magnetic susceptibility, χ, which is defined 
as  

 2



 

B
M

=χ . 

 
A diamagnetic material has a negative χ, while a paramagnetic material has a positive magnetic 
susceptibility. 
 
Ferromagnetism refers to materials with a spontaneous magnetic moment, such as iron.  This suggests 
that even in zero magnetic field, the electron spins and magnetic moments are arranged in some regular 
pattern.  We will limit our discussion to diamagnetic and paramagnetic materials in this course. 
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CHAPTER 2: BASIC NMR 
 

 
We will refer to three different magnetic fields in this course: 
 

(1) Bo – large, static field (> 1 Telsa typically; 1 T = 10,000 Gauss) 
(2) B1 – oscillating radio frequency (rf) field (1-100 Gauss) 
(3) µ - magnetic moment of a nucleus (few Gauss) 

 
Nuclei with nonzero nuclear spin quantum numbers (e.g. if the nucleus possesses an odd number of 
protons or neutrons) have angular momentum.  Examples are 1H, 13C, 19F, and 31P.  The concept of 
nuclear spin is a result of quantum mechanics.  We need not worry about the details of this theory, but it 
is helpful to highlight some of the important physical features of a nuclear spin.  Since the nucleus is 
charged and is spinning (or rotating due to angular momentum), it creates a small magnetic field which 
we call the nuclear magnetic moment.  It can be thought of as a tiny bar magnet with north an south 
poles.  The ratio of the magnetic moment to the angular momentum, J, is called the gyromagnetic ratio, γ 
(or sometimes the magnetogyric ratio).  Each type of nucleus has a unique γ. 
 

I
J

hγγ == µµ
 

 
where I is the dimensionless angular momentum operator with eigenvalues of the z-component being m = 
I, I – 1, …, -I. 
 
If you put some nuclei in a magnetic field, Bo, the interaction energy is 
 

B⋅= µE  
 

We define Bo to be along the z-axis and the energy is 
 

omE Bhγ=  
 
where m is defined above. 
 
Protons have spin quantum number I = ½ so that energy levels available to the spin system are 

oBE hγ±=  and the energy level difference (or frequently called the resonance frequency) is (allowed 
transitions are ∆m = ±1) 
 

oBE hγ=∆ . 
 

A sketch of the energy level dependence is show in Figure 1. 
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Note: slope proportional to γ 
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Figure 1 – Energy Level Dependence of Energy Split vs. Bo
 

Thus, the energy level difference is related to the gyromagnetic ratio and the applied static magnetic field.  
Some gyromagnetic ratios are given below 
 

Atom γ  (MHz/T) 
γ (rad.MHz/T); 

γπγ 2=  
1H (I = ½) 42.6 267.7 
13C (I = ½) 10.7 67.2 
19F (I = ½) 40.1 252 
31P (I = ½) 17.2 108 

 
The resonance frequency is referred to as the Lamor frequency, ωL (since ωh=∆E ) 
 

oL Bγω = . 
 

This is important because if we want to study the spin system we must use energy at the Lamor frequency 
of the allowed energy transition.  For example, in a 1.5 T field, the resonance frequency for protons is 
about 63 MHz.  If we put in energy at 100 MHz, nothing will happen to the system, since photons can 
neither be absorbed nor emitted at this frequency. (A note about  frequencies, i.e. in Hz, because it is 
easier to say, and write, than radians/second). 
 
Now, when a spin system (or ensemble of protons) is not in the presence of a large magnetic field, there is 
no preferred orientation of the individual magnetic moments and consequently no net magnetization is 
generated.  The reason for this is that the magnitude of the magnetic moments and the earth’s magnetic 
field are two small to do any work on the system.  On the other hand, when we apply a strong field, we 
cause the magnetic moments to align with or against the direction of the field (parallel or anti-parallel), in 
the case of protons.  The magnetic field is strong enough to put torque on the spins to do the alignment.  
The spins (or magnetic moments) do not have equal populations in the two states and the result is a net 
macroscopic magnetization in the direction of the field since it is the lower energy state (Boltzmann’s 
law).  We commonly use arrows to depict a nuclear magnetic moment, since then we can see the 
magnitude and direction of the moment.  
 
 
 
 
 

 5



 

+I 

-I 

Spin = ½  

Bo

 
 
 
 
 

E  
 
 
 
 
 
 

Figure 2 – Energy Level Splitting in a Magnetic Field  
 

We can explain the NMR experiment easily using classical mechanics.  We begin with the classical 
equation of motion that says that the rate of change of angular momentum of a nuclear dipole depends 
upon the torque exerted on the dipole by the applied magnetic field. 
 

JBJ γ=×== µ;µ
dt
dTorque  

 
Taking  and manipulating the equations above we have that: ∑= µM
 

BMM
×= γ

dt
d

 

 
where we call M the net macroscopic magnetization for an ensemble. 
 
A cross-product in mathematics is equivalent to a rotation in the physical world.  Thus, what is happening 
here is that the large static magnetic field puts a torque on the magnetic moments and moments process, 
or rotate, around the applied magnetic field (Figure 3).  For simplicity, only one magnetic moment is 
shown in 3a.  It follows that an ensemble of spins would inscribe a cone as shown in 3b since there would 
be no phase coherence between individual magnetic moments.  A way to think about this process is to 
envision a gyroscope.  You wind up the gyroscope and set it on the floor and it precesses while it spins.  It 
is that motion that we are dealing with here. 
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Figure 3 – (a)  Procession of a Single Magnetic Moment about the z-axis Due to a Static Magnetic Field 
and (b) Procession of a Number of Magnetic Moments Along the z-axis Due to a Static Magnetic Field  

 
We can expand the cross-product into matrix form.  Remember that zyx kMjMiM ++=M  and same 
for B. 
 

( ) ( ) ( )xyyxzxxzyzzy

zyx

zyx

BMBMkBMBMjBMBMi
dt

d

BBB
MMM
kji

dt
d

−+−+−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=×=

M

BMM detγγ
 

 
This an equivalent form of  
 

dt
dMk

dt
dM

j
dt

dM
i

dt
d zyx ++=

M
 

 
We can break the equation into its pieces and show the time dependence of the motion for each 
component of M.  First define the components of the magnetic field, B. 
 

1BBB += o  = static + oscillating 
 

We can create a B1 field (oscillating rf field that produces a small magnetic field in a specified direction) 
that rotates in the x-y plane at a frequency ω.  Then 
 

( )
( )

oz

y

x

BB

tBB
tBB

=

=
=

ω
ω

sin
cos

1

1

 

 
Substitute these into the components of dM/dt and see that: 
 

( )( )

( )( )

( ) ( )( ) ( )
1

11

2
1

2
1

cossin

cos

sin

T
MM

tBMtBM
dt

dM
T
M

BMtBM
dt

dM
T
M

tBMBM
dt

dM

oz
yx

z

y
oxz

y

x
zoy

x

−
−+−=

−−=

−+=

ωωγ

ωγ

ωγ

 

 
Note that I have added in the relaxation terms from a phenomenological standpoint.  The x and y 
components of M must go to zero and I have arbitrarily given the time constant for that process T2. On 
the other hand, Mz must return to the equilibrium magnetization which we call Mo or Meq and I have that 
that time the constant value T1.  Note that at equilibrium, Mz = Mo.  These equations are formally called 
the Bloch equations after Felix Bloch. 
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Up to this point we have described the system in the laboratory frame of reference.  As we will see 
later, it is much easier conceptually to work in a different reference frame called the rotating frame.  It is 
quite simple.  Imagine grabbing hold of the z-axis of the system in Figure 3b and spinning the x-y plane at 
the Larmor frequency of the system.  Think of it like this: the laboratory frame is like watching a record 
turn on a turntable, while the rotating frame is like standing on the record itself and rotating with it – now 
you are able to read the songs on the label without getting dizzy!  If we do this to our ensemble of nuclei, 
we can add up the vector components of the magnetic moment and see that the x and y components 
cancel each other, while the z-components add (Figure 4). 
 
 

Laboratory    Rotating 

Bo

x 

z 

(b) 

y 

Bo
Mz 

(a) 

z 

x 

 
 
 
 
 
 
 y  
 
 
 
 
 
 

Figure 4- Illustration of the Magnetic Moments in the (a) Laboratory and (b) Rotating Frame 
 

Now we must derive the equations of motion for the components of M in the rotating frame.  The total 
time derivative of M is given by 
 

t
kM

t
jM

t
iM

dt
dMk

dt
dM

j
dt

dM
i

dt
d

zyx
zyx

∂
∂

+
∂
∂

+
∂
∂

+++=
M

 

 
The unit vectors i, j, k rotate in the rotating frame, but cannot change length.  As we have seen before, a 
rotation is a cross-product in mathematics.  Thus, 
 

k
t
k

j
t
j

i
t
i

×=
∂
∂

×=
∂
∂

×=
∂
∂

ω

ω

ω

 

 
If we substitute this into the total time derivative, we get 
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( )

MM

MM

×+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=

++×+
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛

ω

ω

rotating

zyx
fixed

t

kMjMiM
tdt

d

 

 
We know that the left hand side is equal to BM ×γ .  Rearranging and substituting 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×=

×−×=

×−×=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

γ
ωγ

γ
ωγγ

ωγ

BM

MBM

MBMM

rotatingt

 

 
We call B + ω/γ the effective magnetic field, or Beff.  It is apparent then that the magnetization precesses 
around the effective field in the rotating frame just as the magnetic moments precess around the applied 
magnetic field in the laboratory frame. 
 
Let’s look at the limiting case and see if the total time derivative makes sense with our situation in the 
rotating frame.  If the frequency of the rotating frame equals the frequency of precession 
( oprecessionrotating Bγωω −== ), then 
 

0=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

rotatingt
M

 

 
Thus, if the frame of reference rotates at the Larmor frequency, the magnetization is static in the rotating 
frame, which is what we see in Figure 4b.  This simplifies the problem immensely as we try to envision 
the NMR experiment.  For those of you who are still uncomfortable with the idea of the rotating frame, 
remember that we live in a rotating frame.  The earth spins on its axis and precesses around the sun.  If 
you throw a ball in the air, it is a simple problem to describe its trajectory while on earth, but it would be 
quite a difficult proposition to describe it if you were in outer space. 
 
If we want information about the characteristics of any physical system, we must perturb the system from 
equilibrium and then measure the energy that is emitted from the system as it returns to equilibrium.  In 
our case, we want to study the magnetization generated by the nuclear spin system in a large static 
magnetic field.  We must figure out a way to perturb the net magnetization away from equilibrium, or the 
z-axis.  We can do this by using another magnetic field, B1.  Define 
 

( ) ( )
)(

sincos

1

11

oorot

olab

atrotatingik
jtit

ω
ωω

BBB
BBBB

+=
−+=

 

 
where we choose only one of the rotating components of the B1 field (along the x-axis). This gives 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−×=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

1BBMM
γ
ωγ o

rotatingt
 

 
If B1 is rotating at the Larmor frequency, or oBγ−  (in the opposite direction), then  
 

1BMM
×=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂ γ

rotatingt
 

 
This shows that if we apply an oscillating field, B1, at the Larmor frequency, the magnetization will rotate 
about the x-axis at 1Bγω = .  (Note: it turns out to be in the clockwise direction about the x-axis.  Use the 
left hand rule and let your thumb be the x-axis).  This action tilts the magnetization off the z-axis, i.e. 
away from equilibrium.  Figure 5 summarizes the basic process.  We generate a B1 field using a radio 
frequency transmitter and a tuned resonant circuit (Figure 6) where the power is delivered to a solenoid 
coil (where the sample resides) in a pulse fashion.  The amount of precession, θ, of the magnetization 
about B1 depends on the magnitude (power) of the applied field and the duration of the pulse, t. 
 

t1Bγθ =  
 

 

B1 y 

(a) 

z 

Bo

z RF Pulse 
ω = ωL

(b) 

My 

Mz 

Bo

x x 

 
 
 
 
 
 
 

y  
 
 
 
 
 
 

Figure 5 – Motion of the Net Magnetization After a 90o RF Pulse
 

 

RF Pulse From 
Transmitter 

Solenoid Coil 
for Sample 

 
 
 
 
 
 
 
 
 
 
 

 10



Figure 6 – Common NRM Probe Circuit 
 

Before going on, let us explore the other avenue of applying a B1 field that off resonance, i.e. if 

o
rf B≠
γ
ω

.  Then 

 

2
2

1

1

o
rf

rf
oeff ik

BB

BBB

−+=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

γ
ω

γ
ω

 

 
Figure 7 shows the magnetization precessing around the effective magnetic field as opposed to precessing 
in the y-z plane when we are on resonance (Figure 5).  When ωrf is well below resonance, the effective 
field is parallel to Bo.  As ωrf approaches resonance, the effective field is perpendicular to Bo and finally, 
when ωrf continues above resonance, the Beff is anti-parallel to Bo. 
 
An interesting note:  In the “old” days of NMR before Fourier transforms and pulse spectroscopy, the 
experiment was done in “cw” of continuous wave mode.  This was done by either varying the frequency 
of the transmitter, or by varying Bo.  The latter turned out to be technically easier at the time.  In the 
adiabatic slow passage experiment, the magnetization follows the effective field (i.e. continues to align 
with it) as long as the change in ωrf is much less than the Larmor frequency.  That is what is meant by 
slow passage.  In this way one could manipulate the magnetization and study the chemical environment of 
the spin system.  These days virtually all NMR spectroscopy is done using the pulse technique followed 
by a Fourier transform, but it is important to understand the effective field concept because it is a 
common to conduct pulse experiments off resonance.  This complicates where the magnetization ends up 
after a pulse and one cannot assume perfect 90o or 180o rotations of the magnetization.  This is true the 
farther off resonance the transmitter frequency is (for small differences in frequency, the effect is 
negligible). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 – Precession About the Effective Field 
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Now we are ready to examine what happens after the radio frequency (rf) pulse is applied and we have 
rotated the magnetization to the y-axis shown in Figure 5 (assuming resonance conditions).  We know 
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from Thermodynamics that the system will return to thermal equilibrium.  The spin system does this 
through two types of relaxation processes:  longitudinal and transverse relaxation.  The time constants 
characterizing these processes are T1 and T2, respectively.  Longitudinal relaxation is the return of the z-
component of the magnetization to the equilibrium value, Mo (Figure 8).  Following the rf pulse, the z-
component of M is zero.  As time elapses, Mz increases exponentially until the equilibrium value is 
restored. 
 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

−
11 T
t

oz eMtM  

 
Transverse relaxation involves the dephasing of the magnetization in the x-y plane (Figure 9).  The reason 
for this type of dephasing is that the absolute magnitude of the magnetic field is not identical at each 
nucleus, causing each nucleus to precess at a slightly different frequency than its neighbor.  We actually 
differentiate between the causes of this net loss of coherence into two groups.  The time constant T2 is 
used when describing the transverse relaxation due to processes intrinsic to the sample, for example, the 
dipolar interaction among magnetic moments (discussed in detail later).  On the other hand, there are 
causes of transverse relaxation that are the result of experimental error, such as the impossible task of 
creating a Bo field that is absolutely perfect at each point in the sample.  This type of relaxation due to 
inhomogeneities in the experimental environment is given the time constant T2

*.  At any rate, the 
dephasing of the x-y components of M cause the generation of tiny current in the sample coil (refer to 
Figure 6) and the result is a free induction decay (FID).  The FID is detected with an oscilloscope as a 
fluctuating voltage (Figure 10).  This means that after the rf pulse, Mx and My will have the same 
amplitude as Mo and then decay exponentially to zero with time constant T2*. 
 

( ) *
2

,
T
t

oyx eMtM
−

=  
 

(Note: the FID shown in Figure 10 is a damped cosine wave which means that the transmitter frequency 
was slightly off resonance – the oscillations (or beats) are the protons going in and out of phase with the 
carrier frequency.  If the transmitter were exactly on resonance, we would get a smooth exponential 
without oscillations). 
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Figure 8 – Longitudinal Relaxation (τ is a time interval) 
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Figure 9 – Transverse Relaxation 
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Figure 10 – Signal FID with Decay Envelop 
 

In order to visualize the traverse and longitudinal relaxation, the Bloch equations were solved and Figure 
10b shows the path of the net magnetic moment, M, position as a function of time.   
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Figure 10b – Path of Net Magnetization Under Both Transverse and Longitudinal Relaxation
 
Let us estimate the approximate signal amplitude for a 1 cm3 sample of water in a solenoid consisting of 
N = 10 turns and surface area (A) of 1 cm2.  The magnetic flux caused by the relaxing nuclei in a 1 T field 
is on the order of 4x10-10 T (remember (M = χB).  The voltage induced in the coil is given by 
 

( )tNAMemf ωω sin=  
 

which gives an answer on the order of 1 mV.  We can see that the signal voltage is proportional to ω2 (the 
other ω comes from M).  Noise is trickier to evaluate.  The amplitude of noise goes anywhere from the 
fourth root of ω for small samples to ω for large samples.  Thus the signal to noise ratio is proportional to 
ω in the range of ω to ω7/4.  The important point here is that the signal in NMR spectroscopy at room 
temperature is quite small. 
 
We are now at the point where we have collected the FID, which is a time domain signal.  It is difficult to 
extract information about the system in the time domain and we are often more interested in the frequency 
components of the signal.  We use the Fourier transform (FT) to give us this information 
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where A(t) is the signal function and A(ω).  Conversely, A(t) is the inverse FT (or FT-1) of A(ω).  Figure 
11 shows the FT of an FID obtained from a pure water sample.  The FT of an exponential is a Lorentzian 
lineshape.  Note that one peak is the result as all the protons in water are essentially equal.  Also, the peak 
is shifted slightly (∆ω) since the transmitter frequency was off resonance (thus giving beats in the FID).  
The width of the peak at half height approximates 1/T2

*.  Later we will see that NMR and the Fourier 
transformed spectrum does an excellent job at distinguishing between different types of protons contained 
within a molecule. 
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CHAPTER 3: RELAXATION 
 
 
It is helpful to examine the longitudinal and transverse relaxation in more detail and understand some of 
the fundamental processes that give rise to relaxation.  In NMR spectroscopy, relaxation back to thermal 
equilibrium is caused by fluctuating local magnetic fields.  The term “local” refers to the immediate 
environment of a nucleus.  Since nuclear spins are essentially tiny bar magnets, there exist certain 
interactions between them.  We have all played with bar magnets and felt the forces when two are brought 
together – this is analogous to the dipolar interaction between magnetic moments, or dipoles.  Molecules 
are continually moving (i.e. translating, rotating, and vibrating) and these motions modulate the 
interactions among the nuclei.  In other words, the molecular motions cause the local magnetic fields to 
fluctuate and allow the nuclear spins to relax via some well known interaction, like the dipolar interaction, 
which is most important in spin = ½ systems.  Other interactions can be the basis for relaxation such as 
the electric quadropole, chemical shift anisotropy, scalar coupling, and spin-rotation interactions.  The 
effectiveness of the relaxation as measured by the relaxation time depends on the magnitude of the 
interaction, i.e. for large interactions, the relaxation is generally faster. 
 
Consider a water molecule with protons 1 and 2 in a static magnetic field Bo (Figure 12).  The total 
magnetic field at proton 1 is due not only to the static field, but also the local field created by the presence 
of proton 2.  The local field due to the dipolar interaction is 
 

( )
3

12

2

2
1cos3

r
bloc

−
=

θµ  

 
where r12 is the distance between the two spins, θ is the angle between r12 and the direction of the static 
field, Bo, µ2 is the magnetic moment of proton 2.  We can see that certain variables change when the 
water molecules moves, thus causing the local field to fluctuate.  The angle θ changes when the molecule 
rotates or translates, while r12 varies as the molecule vibrates. 
 

θ

Bo

1

 
 
 2 
 
 
 
 
 
 

Figure 12 – The dipolar interaction and the local magnetic field.
 

In order to understand the dynamics of the relaxation process due to local field fluctuations, we must 
return to the original equation of motion for magnetization in a magnetic field.  Instead of looking at the 
effect of the Bo and B1 fields, let us define the components of the local magnetic field as bx, by, and bz.  
We get 
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( )

( )xyyx
z

zxxz
y

yzzy
x

bMbM
dt

d

bMbM
dt

d

bMbM
dt

d
dt

d

−=

−=

−=

×=

γ

γ

γ

γ

M

M

M

bMM

 

 
These equations tell use something very important.  First, the change in the z-component of the 
magnetization is unaffected by the z-component of the local field bz.  This means that bz has no effect on 

T1 since T1 relaxation is described by 
dt

d zM
.  Similarly, we can see that all three components of the local 

field affect the change in Mx and My, or the transverse relaxation. Go back to the laboratory and rotating 
reference frames and compare the components of the local field.  Remember that in the rotating frame, the 
static components are rotating at the Larmor frequency.  The z-component of the local field is stationary 
in both frames, since in the rotating frame, we are rotating about the z-axis, and in the lab frame, the 
system precesses about the z-axis.  One the other hand, we know that bx and by are stationary in the 
rotating frame, which means they must be rotating at the Larmor frequency in the lab frame.  All this is 
saying is that bx and by signify fast dynamic processes, while bz, being stationary, signifies slow dynamic 
processes.  Since T1 depends only on bx and by, it is affected only by fast molecular motions, while T2 is 
affected by both fast and slow molecular motions.  This is an important difference between T1 and T2, 
causing T2 always to be equal to or shorter than T1.  You should be able to convince yourself of this last 
fact simply by using a vector diagram.  Later, when we learn about spectral density functions and 
molecular correlation times, it will hopefully become more clear. 
 
We have seen that when we put a spin system (I = ½) in a static magnetic field, the magnetic moments go 
from a state of random orientation with no net magnetization, to a more ordered state where there are two 
distinct energy levels, parallel and anti-parallel to the direction of the static field.  In order for this thermal 
equilibrium to be established, energy must be transferred from the spin system to the surrounding, or 
lattice.  In the jargon of NMR, we say that a common temperature is established.  A universal condition 
for energy difference for the spin system is oBhγ .  In the lattice, many energy levels are available and 
because there are so many degrees of freedom, we assume a proper energy level exists for energy transfer.  
Furthermore, since the surroundings at room temperature have essentially infinite heat capacity, we 
assume that the temperature remains constant.  This means that the spin system “cools” to the lattice 
temperature and a population difference between the spin energy levels is established, thus generating a 
macroscopic net magnetization.  Figure 13 summarizes the energy transfer process.  It shows a spin 
energy level | 1 > “flipping” down to energy level | 2 >, while the lattice accepts the quantum of energy 
and goes from energy level | b > to | a >.  This is the only allowed transition. 
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Figure 13 – Spin-Lattice Energy Transfer
 

Requiring the energy levels to match is synonymous ith saying that the frequencies must be equal.  It 

on, a 

et us describe an entire system soaking in a static magnetic field.  Define the four populations: the spin 
 

w
follows, then, that some molecular motion on the time scale of the Larmor frequency must exist for 
relaxation, or the establishment or thermal equilibrium, to occur.  Thermal equilibrium is, by definiti
state whereby dynamic processes are happening (i.e. “spin-flips”), but the net energy change is always 
zero.   
 
L
system will have populations n1 and n2, while the lattice will be Na and Nb.  The number of transitions per
second is 
 

abbWNnsTransition 211sec/ →=  
 

here W1b 2a is the rate of transition from states | 1 > and | b > to states | 2 > and | a >, as shown in Figure w
13.  Define the spin system populations as 
 

21

21.
nnNPopTotal

nnndifferencePop
+==

−==
 

 
and the corresponding transition rates (“up” and “dow ce to the spin system with the 

 
The change is the spin population difference, n, is the number of transitions per second minus those up, or  

n” are with referen
assumption that the lattice does the opposite) are 
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WNWDownRate

WNWUpRate
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→
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↑==
 

 

↑−↓= WnWn
dt
dn

21  

 
Note that dn/dt is zero at thermal equilibrium.  Substitute 
 

( )Nnn +=
2
1

1  and ( )nNn −=
2
1

2  

 
to obtain 

 18



 

( ) ( )↑+↓−↑−↓= WWnWWN
dt
dn

 

 
We define the equilibrium population difference, no, as 
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and substitute this into dn/dt to arrive at the equation for the rate of change of the population difference 
 

1T
nndn o
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where we define the rate = ↑+↓== WW
T

R
1

1
1

.  The solution for the above differential equation is the 

 
familiar result 
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as we have seen this for the relaxation of the z-component of the net magnetization, or T1 relaxation. 
 

 
llowing a Boltzman distribution 

At thermal equilibrium, the rate up equals the rate down and we get a ratio of the two spin populations
fo
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From the Boltzman distribution, we can see that it is possible to alter the ratio of the spin populations.  
The ratio decreases (n2 increases) as Bo increases, or the temperature decreases.  This allows for a greater 

n 

 
orrelation function and its corresponding correlation time.  The correlation function describes the 

can be 

net magnetization and hence, better signal to noise.  This is why the field of NMR spectroscopy has see
the development of very high magnetic fields (10 to 15 T can be standard) and the systems that can cool 
the sample to the millikelvin region (obviously not suitable when the sample is a human being!). 
 
The next item to study in more detail is molecular motions.  We need to introduce the concept of a
c
average behavior of a molecular motion in a system.  Most correlation functions (for our purposes) 
approximated by an exponential function 
 

( ) CAeG τ
τ

τ
−

=  
 

and thus have a characteristic time scale defined by the correlation time τc. Go back to Figure 12 and 
think about the rotating and vibrating water molecule.  The molecule rotates at some frequency, but not at 
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the same frequency all the time because it is also busy vibrating, translating and colliding with other 
molecules.  What we mean by the correlation time for the rotational motion, is that time necessary for the 
molecule to rotate in order to change the angle θ, appreciably.  Similarly for the vibrational correlatio
time – it is the time interval in which r

n 

otion, we are 
oking for the frequency range.  It is no surprise that the rate is equal to the Fourier transform of the 

f 

12 will change appreciable due to the vibrations. 
 
The correlation function is a time domain function and if we wish to know that rate of m
lo
correlation function.  We call the resulting function the spectral density function, J(ω).  It is the range o
frequencies at which  the motion exists.   
 

( ) ( )

( ) ( )∫

∫
∞

∞−

−

∞

∞−

−

=

=

ωω
π

τ

ττω

ωτ

ωτ

deJG

deGJ

i

i

2
1

 

 
Let us assume we have a random step function with amplitude, A (Figure 14) 
 

Figure 14 – A Random Step Function Process With Amplitude A.

 τ
 
 

Time A 
 
 
 
 
 
 
 

 
We can assume that tten as 
 

 the correlation function for the motion is an exponential and is wri

( ) ceAG τ
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Solve for the spectral density function 
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The spectral density function tells us that for a motion described by an exponential, the spectral density 

maximum occurs when 
ω

τ 1
=c .  This is yet another way of stating that efficient relaxation in NMR 

occurs when a motion has frequency components at the Larmor frequency. 
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We can experimentally vary the correlation times that give rise to relaxation.  An approach to increase th
correlation time (i.e. slow ystem) is to increase the viscosity of a solution by lowering the 
temperature.  Conversely ed up the system (lower the correlation time), we can increase the 
temperature.  This obviously causes the molecules to move faster.  It is impo
ltering the temperature of the system, we only alter the frequency distributi

e 
down the s

, to spe
rtant to realize that up 

on of the motions, not the 

Figure 15 – Correlation and Spectral Density Functions

a
total power available for molecular motions.  This means that the area under the spectral density curve 
remains constant (Figure 15). 
 
 
 
 
 

τ
ω

G(τ) J(ω)

 
 
 
 
 
 
 
 
 
 
 

 
s was mentioned previously, many interactions exist that the molecular motions could modulate and 

ause T1 and T2 relaxation.  The primary interaction responsible for relaxation in proton systems is t
ipolar interaction.  The dipolar Hamiltonian gives us an idea as to the magnitude of the interaction.  We 
ave seen part of it befor

 

A
c he 
d
h e, but here is the entire equation 

( )FEDCBA
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hH dipolar +++++= 3
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here the letter are mostly orientationally dependent termw

U
s like we have seen before (i.e. ).  

sing the dipolar interaction, we can derive expressions for the relaxation rates (the particulars here are 
not important, just the result) 
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where the spectral density functions indicate the magnitude of the frequency component at the specified 
frequency.  This shows that T1 relaxation depends on frequency components at the Larmor frequency and 
twice the Larmor frequency (a higher order term that is much smaller than the first one), or fast dynamic 
processes.  T2 relaxation has the same terms with the addition of a zero frequency term, corresponding to 
the slow dynamic processes.  The addition of this term automatically makes T2 equal to or less than T1.  

faster 
slower 

faster (short τc) 
slower (long τc) 

cτ
ω 1
=  
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This relates back to the Bloch equations where we sa  that T  relaxation depended on all three 

thus 
 changes more than T2 if we 

ary B  (unless we stay in the flat part of the curve).  Later on we will see that T  and T  govern the 
s 

s. 

w 2
components of the local field, while T1 relaxation depended on bx and by. 
 
We can look at the spectral density function in Figure 15 and anticipate the effect of changing the static 
magnetic field on the relaxation rates.  On the middle curve, a point where the relaxation rate is most 
efficient is shown.  If we have a static magnetic field such that the Larmor frequency is at that point, we 
will have the fastest relaxation.  If we go to the right of that point, the spectral density falls off , 
making the relaxation slower.  If we continue this exercise, we find that T1
v o 1 2
contrast obtained in an NMR image.  It is important to realize that images obtained on different machine
will look the same only if the magnetic fields are identical.  
 
For completeness, a rough idea of the magnitude of the other interactions among spins is given.  
Paramagnetic interactions become important when molecules have unpaired electrons.  The dominating 
factor in the relaxation rate is the γ for an electron which his 1000 times greater than that for a nucleu
 

22

6r
rate ∝  

c 
 

2’s and T1’s.  The chemical shift anisotropy interaction arises when the Larmor frequency changes 
with the orientation of the molecule relative to Bo.  The next interaction is scalar relaxation which occurs 
in systems with different nuclei, such as 1H and 13C.  In these systems, each type of spin has its own 
energy levels and relaxation mechanisms, but one re  causing a local field 

T2.  

e can 
he 

 the experiment, a 90  and a 180 .  Figure 16 shows that after the 90  pulse, the spins are 
llowed to diphase in the x-y plane.  They diphase because each spin precesses at a slightly different 

 
d.  

nce 
se 

electronnucleusγγ

 
The quadrupolar interaction is important for nuclei with spin > ½.  It is an interaction between the electri
ields generated at the nucleus due to nuclear anisotropies.  It is a quite large interaction resulting in veryf

fast T

laxing can affect the other by
fluctuation.  As you can imagine, this is an extremely small effect.  The final interaction is the spin-
rotation interaction where the rotation of the molecule and the electronic distribution couple to cause a 
fluctuating local field at the nucleus.  In summary, relaxation occurs by any of the above possible 
mechanisms, but we tend to simplify the problem and concentrate on the dominate process, the dipolar 
interaction. 
 
The last part of this section deals with the measurement of the relaxation times.  We will begin with 
We saw that the FID decayed with the time constant T2* because of inhomogeneities in the magnetic 
fields.  We can minimize this effect by shimming the static field and causing T2* to approach T2.  W
also do a tricky experiment called the spin echo that capitalizes on the static inhomogeneities.  We use t
two pulses in o o o

a
frequency due to magnetic field inhomogeneities (static) and local field fluctuations (dynamic) intrinsic to
the spins.  Thus, some spins go faster than the Larmor frequency, while others go slower and get behin
We let the spins diphase for some time τ and then apply a 180o pulse.  At τ seconds after the 180o pulse, 
the spin system refocuses along the –y axis.  The effect of the 180o pulse is to put the slow spins ahead of 
the fast ones and then the fast ones and then the fast ones catch up and the magnetization refocuses.  Si
there is nothing to keep the spins in phase, they dephase again. This rephrasing and dephasing gives ri
to what is called an echo – it is essentially a back to back FID.  An analogy to this process goes as 
follows.  You are a runner in a road race and everyone is lining up at the starting line.  The gun goes off 
and the race begins.  Now, there are fast people and slow people, and pretty soon runners are distributed 
along the race course.  Let the race proceed for one minute, freeze the runners, and then flip them 180o so 
that the fast ones are behind the slow ones.  Now start the race again and after one minute everyone is at 
the starting line.  The runners keep going and again become distributed along the course. 
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Figure 16 – The Spin Echo Experiment
 

o 
ho

that the echo is formed on the y axis.  Re

The way we write a pulse sequence like the spin ech is shown in Figure 17, along with the resulting 
signal echo.  Note that the polarity of the FID and ec  signals depends on the phases of the 90o and 180o 
pulses (which direction B1 field points) and the type of receiver in the spectrometer.  In the above 
example, the echo rephrases along the –y axis and would give us an upside down echo.  In Figure 17, I 
have phase shifted 180o pulse so member, the magnetization 
rotates around the axis of the rf field according to the left hand rule. 

n Echo Sequence.  Note phase of 180

 
 
 
 
 
 
 
 
 
 
 

Figure 17 – Spi o
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You can see in Figure 17 that the amplitude of the echo is less than that of the FID.  If we did a series of 
xperiments where we increased τ each time, we would see a gradual decline in the echo amplitude.  In 
ct it decays as an exponential, with a time constant T .  This is exactly how we measure the intrinsic T2 

relaxation time.  In the sp  inhomogeneities is 
refocused, thereby leaving the dephasing done by dynamic inhomogeneities.  Instead of doing several 

 

e
fa 2

in echo experiment, only the dephasing due to the static

experiments where we vary τ, we can do the entire experiment in one shot.  All we do is to keep repeating
the 180o pulse (90x - τ - 180x - τ - 180x - τ …).  Figure 18 shows the resulting echo train.  If we plot the 
absolute values of the echo amplitudes, we could extract T2 by the equation 
 

( ) 2
,

Tt
oyx eMtM −=  

 
 
 
 
 

Figure 18 -  Spin Echo Train
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here are two basic experiments for measuring T1.  One is called saturation recovery and the other is 
version recovery.  The o pulses which 

liminates all components of with time 
constant T1.  We can do a series of exp e system, wait τ seconds, and then 
apply a 90o pulse and collect the FID.  As τ gets long r, the amplitude of the FID begins to approach Mo.  

d 
oint 

T
in first involves saturating the spin system with a series of 90

M.  The magnetization then returns to its equilibrium value e
eriments where we saturate th

e
Refer back to Figure 8 for a vector diagram of the process.  We have seen relaxation equation before an
Figure 19 shows the plot of signal amplitudes (by plotting the signal amplitudes we mean the initial p
of the FID). 
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Figure 19 – Saturation Recovery
 

he inversion recover pulse sequence contains a 180o pulse, a wait of some time τ, followed by a 90o 
ulse.  The phase of the rf pulses is not important in this experiment.  Since we begin with an inversion of 
e magnetization we measure the recovery from -M  to M , thus doubling the dynamic range which 

reduces experimental error (Figure 2
 

T
p
th o o

0).  The relaxation equation is 
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CHAPTER 4: LIQUID SPECTROSCOPY 
 
 

The most important application of NMR spectroscopy is in the field of organic chemistry.  It is one of the 
most powerful tools used in molecular structure determination and has allowed the field to advance at 
lightening speed.  The reason for this is that NMR is exquisitely sensitive to the atomic environment in a 
molecule in the liquid state, or a compound dissolved in some solvent.  The resonances in a spectrum 
reflect subtle differences (i.e. a few hertz) in the environment of the protons in a molecule.  Using a few 
rules, we can come to a basic understanding of how these spectra are interpreted, and explore other types 
of experiments that are useful in liquid spectroscopy. 
 
First let us begin with the information contained in a resonance line.  Remember the line is obtained 
through a FT of the FID.  The resonance line reflects whatever relaxation mechanism is used by the 
system to cause T2 relaxation.  In solids, the dominant process involves the dipolar interaction which goes 

as 6

4

r
γ

, and thus can give us information about the distance between interacting dipoles.  Another 

important relaxation mechanism in solids and less mobile molecules is the chemical shift anisotropy.  
These interactions cause the width of the line to be quite large – on the order of several kilohertz.  Any 
smaller interactions are “covered up” and consequently lost.  Liquids, on the other hand, contain mobile 
molecules which cause an averaging of any orientationally dependent interactions and a remarkable 
narrowing of the resonance lines.  This is formally called motional narrowing. 
 
Let us compare the NMR spectrum of ice and water.  A typical line width for a sample of ice can be 
estimated at 
 

( ) sec/101 5

2

radians
To ≈∝∆ω  

 
T2 can be defined as the time in which an individual spin dephases by one radian due to a perturbation, Bi 

or synonymously, ( )oi ωγ ∆≈B  is the local frequency deviation due to the perturbation, Bi.  Assume the 
perturbation, Bi is due to the dipolar interaction.  If the molecules are moving rapidly (short τc), then Bi 
seen by a given spin fluctuates rapidly in time.  In time τ, the spin will precess an extra phase angle, ∆φ 
relative to steady precession in Bo. Note this is no different than applying a B1 field and having the 
magnetization precess around it.   
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If τ is short such that 1<<∆φ , then motional narrowing occurs.  We can see this using the simple 
random walk theory of diffusion.  The mean square displacement due to diffusion of a molecule is 
 

22 nLr =  

 
where L is the average length of a single step and n is the number of steps taken.  In our example, the 
mean square dephasing angle after n intervals of duration τ in Bo is 
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The average number of steps required to dephase one radian is 
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By definition 
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Now, the line width for water (since the criterion of ∆φ << 1 is met with τ ≈ 10-10 seconds in water) is 
 

( ) ( ) τωτγω 22
2 oiliquid T ∆===∆ B  

 
which gives a line width on the order of one radian per second as compared to 105 radians per second for 
ice.  Thus, the T2 for solids is quite short, while that for liquids is long.  T1 is about the same as T2 for 
liquids, while in solids T1 can be short or long.   
 
In liquid spectroscopy, the Larmor frequency of an individual nucleus is determined by the electronic 
distribution in the chemical bonds.  Different electronic distributions give rise to different chemical shifts 
and J coupling, the two main interactions that are not averaged out by the molecular motion.  The 
chemical shift in liquids is an isotropic phenomenon.  Because the line widths in liquids are very small, 
the static magnetic field must be extremely homogeneous.  Shimming the magnetic field provides 
homogeneities on the order of 1ppm or less.  In addition to this, the liquid sample is put into a long 
cylindrical tube and is spun inside the static field to further average our inhomogeneities. 
 
The chemical shift of a particular proton, or group of equivalent protons, is determined by the shielding 
constant, σ, where 
 

( )HH ∆+= oγω  
 

and  
 

oHH σ−=∆  
 

∆H is referred to the chemical shift relative to some standard chemical shift that is accepted as zero.  The 
most common “zero” is the resonance arising from the 12 equivalent protons of tetramethyl silane.  The 
reasons that this compound is used as a standard is that it is one of the most shielded, is essentially inert, 
and is easy to insert and remove from samples.  Shielding means that much of the electron density exists 
in the vicinity of the protons, corresponding to a large σ.  Before going into this detail, let us go over the 
rules of liquid NMR spectrum (Figure 21).  The units for reporting resonances are in ppm, where 
 

( )
( )MHzfrequencyerSpectromet
Hzreferencefromppm ν∆

=  
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The reason for this scale is that it eliminates the field dependence of the resonance as the magnetic fields 
on no two spectrometers are exactly identical.  We use the symbol δ to report chemical shifts in ppm. 
 

“Upfield” 
“Shielded” 

“Downfield” 
“Deshielded” 

B  
 
 
 
 
 
 
 
 
 

 
ppm ν 

           10                                                   5                                                     0 

Figure 21 – Spectrum Basics
 

Figure 21 shows what seems to be an error: the frequency and magnetic field are going in opposite 
directions.  You are also wondering why the spectrum goes from 0 to 10 from right to left.  Tradition is at 
play here.  We must go back and examine the way spectra were taken when NMR jumped on the scene.  
In CW NMR, the field, Bsweep.  The Larmor frequency can be written 
 

( )sweepoL BBB +∆+= γω  
 

A resonance occurs when ∆B and Bsweep cancel.  A large shielding constant requires a larger sweep field 
and we say that the resonance appears “upfield” and that the nucleus is “shielded”.  Shielded nuclei, then, 
resonate at lower Larmor frequencies since frequency increases going left.  This is a confusing 
convention, but over time, it will make sense.   
 
Chemical bonds are responsible determining the electronic distribution within a molecule.  The shielding 
constant is a result of the character of the bond.  Begin with a hydrogen atom (Figure 22).  For 
diamagnetic materials, Lenz’s Law states that in a magnetic field, an induced current will flow in the 
electron field such that a local magnetic field will arise at the nucleus in a direction opposite that of the 
applied field (use the right hand rule here).  Therefore, the total field seen at the nucleus is always less 
than the applied field.  The hydrogen atom has the largest shielding constant, given by 
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where µ is the permittivity of free space, e is the elementary charge, me is the mass of an electron, and 
ρ(r) is the electron distribution. 
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Figure 22 – Schematic of the Hydrogen Atom
 

We speak of the hydrogen atom as being purely diamagnetic.  Its resonance is the farthest upfield.  
Adding atoms to a molecule causes a reduction in the “pure” diamagnetic effect and the resonances are 
shifted downfield.  For molecules, the shielding constant is the sum of different electronic effects 
 

'σσσ += hydrogenmolecule  
 

where σ’ is the shielding effect due to other atoms in the molecule.  The determining factors of σ’ are the 
type of atom in the vicinity, the character of the chemical bond (i.e. single, double, or triple bonds), the 
electron circulates within the substituents which can cause secondary field effects, van der Walls effects, 
and the effects of the surrounding medium (i.e. hydrogen bonding, etc.). 
 
The hydrogen halides, HF, HCl, HBr, and HI, can be used as an example of the inductive effect of the 
electronegativity of the halides to reduce the pure diamagnetic shielding constant.  The most 
electronegativity element, fluorine, has the largest effect and essentially sucks away the electron density 
from the hydrogen nucleus to deshield it.  Chlorine follows, then bromine, and finally iodine, so that the 
hydrogen nucleus in HI is the most shielded series. 
 
More important in organic chemistry are hydrogen atoms attached to carbon skeletons.  The electron 
density at the carbon atom usually defines the effects on the hydrogen nucleus and its Larmor frequency.  
The effects of halide substituents on a carbon skeleton parallel the effects in the hydrogen halide series – 
it follows electronegativity.  Figure 23 summarizes the effect of a halide in small alkanes.  The arrows 
above the protons on the right identify which protons are targeted in the plot.  In series’ A and B, a purely 
inductive effect is seen.  In B, an added effect of another carbon is seen.  In series C, the effect is more 
complicated due to secondary magnetic fields generated because of the large size of the electron clouds 
(or, in other words, the increased polarizability).  This effect is called magnetic anisotropy. 
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Figure 23 – Effect of  Halides on the Protons in a Carbon Skeleton
 
The effect of an –NO2 group is seen in Figure 24.  This is purely an inductive effect that decreases with 
distance as can be seen in the ∆δ column. 
 

1      2    3                                            1     2    3 

 CH3CH2CH3   O2NCH2CH2CH3         ∆δ 

 
 
 
 

1 δCH3 0.91 ppm  δCH2 4.36 ppm 3.45  
 
 2 δCH2 1.33 ppm  δCH2 2.05 ppm 0.72 
 
 

3 δCH3 0.91 ppm  δCH3  1.03 ppm 0.12  
 
 

Figure 24 – Effect of a Nitro Group on Proton Chemical Shift
 

Carbon cations and anions can cause a loss or gain of electron density around the neighboring protons.  It 
is easy to see this effect.  One way to clarify where the electron density is in a molecule is to draw the 
resonance structures.  This is especially true in molecules that have multiple bonds in them.  It becomes 
more difficult to predict the chemical shifts in carbon skeletons with double and triple bonds.  For 
instance, the chemical shift values for the protons in three examples, ethane, ethylene, and ethyne, are 
shown below.  We must actually look at the geometry of the electron density to account for these values. 
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Vinyl protons actually sit in the plane of the molecule (Figure 25) where the electron density is at a 
minimum since the π-electrons of the double bond hover above and below the plane.  This causes the 
deshielding effect and accounts for the chemical shift of 5.0. 
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Figure 25 – Vinyl protons deshielding in the plane of the molecule
 

A similar effect is seen in a carbonyl group where the C-O bond forms the plane of the molecule with π-
electrons above and below.  Any protons in the plane are deshielded.  A molecule with a double bond can 
have a geometry so that a proton from another part of the molecule hangs near the π-electron density and 
can be actually be shielded.  
 
A triple bond must also be examined geometrically.  Here the π-bond electrons are perpendicular to each 
other, forming a cylinder of electron density about the axis of the molecule.  Within this cylinder these 
electrons can circulate, generating a current, and thus a local field in the opposite direction to the applied 
field (Figure 26).  This causes a shielding effect on the protons. 
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Figure 26 – Shielding Effect in Ethyne
 

The last major effect for our purposes is the generation of ring currents in cyclic conjugated systems 
(those with 4n + 2 π - electrons).  The chemical shift for the protons in benzene is 6.9 ppm.  We ask why 
this is farther down field than the vinyl protons.  The reason is that a diamagnetic ring current is generated 
in the benzene ring (Figure 27), which results in a local field opposing the applied field in the center of 
the ring.  
 
If we follow the field lines out and around to the protons on the outer part of the ring, we see that the 
direction of the local field is in the same direction as the applied field.  This is a deshielding effect and the 
resonance is downfield. 
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Figure 27 – Ring Currents and Local Field in Benzene
 

We have examined some of the effects of chemical shift in basic organic molecules.  The following is a 
short summary of approximate chemical shifts: 
 
 Alkanes: δ = 0.9 – 1.5 
 Cycloalkanes: δ = 1.0 – 1.8 
 Alkenes: δ = 4.5 – 6.0 
 Alcohols: δ = 3.4 – 4.0 (-OH proton can be anywhere) 
 Ethers: δ = 3.3 – 4.0 
 Ketones and Aldehydes: δ = 2.0 – 2.7 
 Carboxylic Acids: δ = 2.0 – 2.7 
 Amines: δ = 2.0 – 2.8 (-NH protons wide δ = 1.0 – 5.0) 
 Aromatic Compounds: δ = 6.0 – 8.5 (aromatic protons) 
    δ = 2.3 – 3.0 (attached alkyl groups) 
 
Another aspect of the NMR spectrum is helpful in determining molecule structure.  The area under each 
resonance peak is proportional to the number of protons that gave rise to the peak.  Next we will see that a 
resonance may not only be a single peak, but may also have multiplicity. 
 
Multiplicity arises because of another interaction left in liquid NMR spectroscopy J-coupling.  This is a 
small scalar effect and leads to hyperfine splitting of a single peak.  It is a consequence of the orientation 
of the nuclear spins on the electronic wavefunction.  The only reason we see it is that the motion in 
liquids eliminates everything else.  It is the smallest isotropic effect. 
 
J-coupling is a magnetic interaction not transmitted through space, but rather by bonding electrons 
through which the protons are indirectly coupled.  We will only consider first order effects – the distance 
of transmission is through 3 bonds. 
 
Consider the ethanol molecule, CH3CH2OH.  If you are the –CH3 group, you see 3 different possible spin 
states (a triplet) for the CH2 group next door (Figure 28).  The frequency shift of the states is ± J, the spin 
coupling constant. 
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Figure 28 – Possible Spin States for –CH2
 

Likewise if you are the –CH2 group looking at the –CH3 (Figure 29) and the result is a quartet instead of a 
singlet. 
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Figure 29 – Multiplet from –CH3
 

The intensity distribution within a multiplet is related to the relative probabilities of the different spin 
combinations, or 
 

12 += nItyMultiplici  
 

where I = ½ for protons and n is the number of neighboring protons.  Multiplicity for protons is n + 1.  
The relative intensity of each peak in the multiplet goes as the coefficient of the binomial expansion 

 (Pascal’s Triangle) (Figure 30). ( nba + )
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Figure 30 – Pascal’s Triangle
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A few examples follow.  The protons on the second carbon in n-butane (CH3CH2CH2CH3) will give a 
multiplet with 6 peaks since there are a total of 5 protons on the two adjacent neighboring carbon atoms.  
Remember, we are only concerned with a distance of 3 bonds.  In t-butane ((CH3)3CH), the tertiary 
carbon has one proton that will give rise to a multiplet of 10 peaks due to the nine protons on adjacent 
carbons.  The methyl protons are considered chemically and magnetically equivalent and will give rise to 
a simple doublet since there is only one neighboring proton.  We will do many examples in class – 
practice is the only way to master these principles. 
 
In π-bond systems, there are higher order, longer range effects and the expected multipet may have yet 
finer splittings. This is due to the ability of π-electrons to “transmit” magnetic information more 
effectively and coupling occurs farther than the 3 bonds as in saturated systems. 
 
Another useful aspect of liquid spectroscopy is that it can given us information about molecular kinetics.  
For instance, N, N-dimethylformamide is shown in Figure 31 as two resonance structures. 
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Figure 31 – Resonance Structures of N, N-dimethylformamide
 

The structure on the right tells use that the N-C bond has some double bond character which causes a 
rather high barrier to rotation at room temperature.  This barrier to rotation then causes the protons on the 
methyl groups (labeled A and B) to have different chemical shifts, since the chemical environments are 
different.  The protons on A, see carbonyl oxygen across the way, while those on B see a lone proton.  
Thus, at lower temperatures, two singlets result – one from A and one from B.  Consider the two states, A 
and B, which exchange with the corresponding rate constants, k and k-1
 

BA
k

k 1−

↔  

 
and protons  A and B give rise to peaks at ωA and ωB.  The separation between the peaks is then 

ωωω ∆=− BA .  Now, if the correlation time for the rotational process is such that 1>>∆ωτ , then we 
see two peaks.  As τ∆ω approaches 1, the two peaks begin to coalesce to form one peak.  We can do this 
by increasing the temperature which makes the correlation time decrease (the molecules are moving 
faster).   We can increase the temperature farther and the one peak now becomes sharper.  What is 
happening is that we are seeing the time average of the two different environments when the molecule is 
rotating faster than the “NMR time scale”, or τ∆ω << 1.  In other words, in order for the protons to give 
off two separate peaks, they must remain in one environment long enough to satisfy τ∆ω > 1. 
 
One final aspect of liquid spectroscopy to discuss is the use of decoupling experiments.  If you are an 
organic chemist and you build a new molecule, but the NMR spectrum is complicated and you are unsure 
of the peak assignments, you do a decoupling experiment to identify adjacent protons.  This requires the 
use of a separate transmitter set at a frequency to saturate and give rise to no peak.  Also, the multiplets 
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from protons on neighboring carbon atoms would collapse into singlets.  Thus, you can walk you way 
through a molecule and determine neighboring protons.  Decoupling may also be used to eliminate 
unwanted peaks.  For example, if a large water peak is covering up information about other molecules, it 
is possible to saturate the water protons so that the water peak disappears and leaves the information 
desired underneath it.  This is especially useful in biological systems where water is everywhere. 
 
This chapter has been a brief explanation of liquid spectroscopy, hopefully enough to understand the basic 
principles.  It is important as the field of MRI advances since spatially localized spectroscopy is becoming 
a fascinating way to look at biochemical processes in the body.  We will see more of this later. 
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CHAPTER 5: FOURIER TRANSFORM THEOREMS 
 

 
Image processing involves several of the FT theorems.  Here we list and describe the important ones for 
our purposes.  The FT in two dimensions yields spatial frequencies.  We define the FT and FT-1 in two 
dimensions 
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The FT theorems are listed below: 
 
(1)  Linearity: )()()( GFgFhgF βαβα +=+  
 

(2)  Similarity: if ( )( ) ( )yx kkGyxgF ,, ≡ , then ( ){ } ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

b
k

a
k

G
ab

byaxgF yx ,1, .  Stretching space is 

 equivalent to contraction in frequency. 
 
(3)  Shift Theorem: if ( )( ) ( )yx kkGyxgF ,, ≡ , then  ( ){ } ( ) ( )bkaki

yx
yxekkGbyaxgF +−=−− π2,, .  

 Translation in space is equivalent to a linear phase shift in frequency. 
 

(4)  Parseval’s Theorem: ( ) ( )∫ ∫∫ ∫ = yxyx dkdkkkGdxdyyxg
22 ,, . 

 
(5)  Convolution Theorem: ( ) ( ){ } ( ) ( )yxyx kkHkkGdadbbyaxhbagF ,,,, =−−∫ ∫   where G = F

 and H = F(h). 
 
(6)  Autocorrelation Function:  if 

(g) 

( )( ) ( )yx kkGyxgF ,, ≡ , then 

 ( ) ( ){ } ( ) 2* ,,, yx kkGdadbybxagbagF =−−∫ ∫ .  Similarly,  

 ( ){ } ( ) ( )∫ ∫ −−= dadbkbkaGbaGbagF yx ,,, *2
. 

 
(7)  Fourier Integral Theorem:  ( ){ } ( ){ } ( )yxgyxgFFyxgFF ,,, 11 == −−  
 
Commonly Used FT’s: 
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(2)  Triangle:  ( )
⎩
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=
elsewhere
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0

1||1
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 Note that , a convolution. 
 
(3)  Delta Function:  
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 frequencies. 
 

(4)  Comb Function:  .  The FT is 
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CHAPTER 6: INTRODUCTION TO IMAGING 
 

 
We are interested in the relation between the physical properties of an object and the image and its 
properties.  The object is usually something in three dimensions, while the image has been compressed 
into two.  The properties reflected in an object are listed below. 
 
  Conventional x-ray  µ, the mapping attenuation 
  CT scan  µ, and atomic number 
  Digital subtraction angiography  µ (iodine) 
  Nuclear scanning, PET, SPECT  Concentration of emitting nuclei  
  Ultrasound  interfaces, velocity 
  NMR  Spin density, T1, T2, chemical shift (σ) 
 
The relationship between object and image can be linear or have spatial invariance.  A space invariant, or 
stationary process is where the object is moved and the image is shifted without change.  A linear process 
means 
 

( ) ( )[ ] ( ) ( )11111111 ,,,, yxbStyxaSsyxbtyxasS +=+  
 

where s and t are the input functions and S is the operator function. 
 
The image is usually intensity, or optical density, reflecting spatial frequencies.  The noise in the image 
can be continuous or digital.  The resolution of an image is important and defined to be the ability of an 
imaging system to reproduce spatial variation of the object in the image plane.  It should be stressed that 
resolution is not the smallest object that you see.  Use the point spread function (PSF), or impulse 
response function 
 

( ) ( ){ }byaxSbayxh −−= 1122 ,,,, δ  
 

which is the output response at (x2, y2) of δ at (a,b).  This tells how well the points get transferred from 
object to image.  Think of an input function 
 

( ) ( ) ( )∫ ∫ −−= dadbbyaxbagyxg 111111 ,,, δ  

 
where  is essentially a weighting factor for the elementary δ’s. The output function reflects the 
“sifting” property of the delta functions 
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If the system is space invariant, then 
 

( ) ( )byaxhbayxh −−= 2222 ,,,,  
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and only the distances x2 – a and y2 – b contribute causing h to change in location and not form.  Thus, 
 

( ) ( ) ( )∫ ∫ −−= dadbbyaxhbagyxg 221222 ,,,  

 
( ) hgyxg *, 1222 =  

 
where * denotes a convolution.  In other words, the output function is convolution of the input function 
and the PSF (go back to review of FT theorems).  The response to a unit impulse is characterized by the 
full width at half height (FWHH) of the PSF.  If the system has many sources of spread in the PSF, then, 
in general 
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2
2

2
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by the Central Limit Theorem. 
 
Another important function to describe the resolution of an image is the modulation transfer function 
(MTF).  It is the ratio of the output modulation to the input modulation (Figure 32). 
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Figure 32 – Frequency Modulation 
 

The MTF is normalized such that MTF (0) = 1.  Thus, MTF(ν) ≤  MTF(0).  Digital imaging involves 
discrete sampling of an object, for example, in a CT scan, the signal detectors are aligned in discrete 
banks.  If the signal is digitized, we must determine how rapidly to sample the data in order to get an 
accurate reflection of the analogue signal.  The Nyquist theorem states that we must sample at twice the 
highest frequency to accurately reconstruct a sinusoidal signal, i.e. we must sample at least twice per 
cycle (or we will have aliasing). 
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For a certain class of object function, it is possible to reconstruct the sample data exactly.  The objects 
must be band limited, i.e. their Fourier Transform must be non-zero over a finite region of frequency 
space.  This is known as the Whittaker-Shannon sampling theorem.  Consider a rectangle lattice of 
samples of g: 
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where gs(x,y) is the sampled object g(x,y) is the object itself,  and X and Y are 

sample spacing.  The object is therefore sampled on a grid which is separated by X and Y.  By the 
convolution theorem, 
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therefore, 
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i.e. Gs is just G = FT{g} about each point n/X and m/Y in the kx – ky plane. 
 
Since we assume g(x,y) to be band limited, G is finite over a region T (see Figure 33).  If X and Y are 
sufficiently small, then 1/X and 1/Y are large enough to avoid any overlap.  It is therefore possible to 
obtain G from Gs by passing gs through a filter that only transmits the n = 0 and m = 0 term.  By 
excluding all the other terms, the output of this filter is exactly g(x,y), the desired object. 
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Figure 33 – Representation of G(kx,ky)
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To determine the maximum allowable separation between the samples, let 2Bx and 2By be the widths in kx 
and ky of the smallest rectangle enclosing the region R.  Then, 
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To retrieve g(x,y) from gs(x,y), we must pass gs through a filter of a transfer function.  One of the possible 
choices for this transfer function H is: 
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therefore, 
 

( ) ( ) ( )yxyxyxs kkGkkHkkG ,,, =  
 

In the spatial domain, this becomes a convolution of gs(x,y) and h(x,y). In the spatial domain, h(x,y) is: 
 

( ) ( ) ( )yBcxBcBByxh yxyx 2sin2sin4, =  
 

By working through the convolution given that gs(x,y) is a comb function, we can obtain the final solution 
for g(x,y) for this given set of conditions: 
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Cross-sectional reconstruction 
 
Projection Reconstruction 
 
Given any object g(x,y) in spatial coordinates, it is often easier to find its Fourier transform G(kx,ky) from 
most imaging techniques, including CT and MRI.  However, since these techniques take projections of 
multi-dimensional objects, there must be a way of reconstructing the image from the data obtained. 
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Figure 34 – Projection of a 2-D object onto axis r 
 

The projection of g(x,y) along any axis can be found by evaluating the following integral, for example, 

along the x-axis:  .  For any arbitrary angle φ, ( ) ( )∫
∞

∞−
= dyyxgxP , ( ) (∫∫=

φ
φ

,
,,

r
dsyxgrP ) .  The 

Fourier transform of this projection corresponds to a line through G(kx,ky) (i.e. FT{P(x)} = G(kx,0)). To 
see this, rewrite G(kx,ky) in terms of an integral over the axes r and s. 
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But as seen above, the integral of g(x,y) over s is simple the projection onto P(r,φ).  Therefore, 
 

( ) ( ) ( )φφ π ,,, 2 kGdrerPkkG ikr
yx == ∫ −  

 
The Fourier transform of each projection therefore defines a ray at angle φ in G(kx,ky).  This is known as 
the Central Slice Theorem.  If enough projections are taken, it is reasonable to assume that we can 
construct g(x,y), by taking the inverse Fourier Transform of the projections. 
 
This requires that the projection be linear, such that each element along the path contributes equally. 
 
   CT – takes logs 
   PET – use directly 
   SPECT – doesn’t work 
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Figure 35 – Central Slice Theorem 

 
Back projections 
 
Instead of building the k-space picture by overlaying the projections through the origin, what if the 
projections where backprojected throughout the entire k-space domain along their respective angles (see 
Figure 36).  In this fashion, the point response is a star, or equivalently, PSF α 1/r.  
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Figure 36 – Backprojection of a Point 
 

The points at low spatial frequencies are oversampled.  To obtain a properly weighted image, multiply the 
backprojected image by a ramp filter W(k) = |k|.  In real space, this can be achieved by convoluting the 
projections with the Fourier Transform of W(k). 
 

kmax

k 

W(k)  
 
 
 
 
 
 
 
 
 

Figure 37 – Convolution Function Used in Backprojection 
 

In practice, the exact convolution will vary and lead to trade-offs in resolution since we don’t have a 
smooth roll-off in frequency to avoid ringing in space. 
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CHAPTER 7: NMR IMAGING 
 

Now that we have seen how to reconstruct images from their projections, how do we obtain projections 
using NMR?  We can’t collimate the RF pulses like we can collimate x-rays because their wavelength is 
much too long.  However, we can apply a linear magnetic field in the desired direction, i.e.: 
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Figure 37 – Linear Gradient in the Magnetic Field 
 

The spins distributed in the object will be precessing at different resonance frequencies which are dictated 
by the strength of the linear gradient.  By examining the spatial distribution of the frequencies, we get a 
projection of the object along the x direction.  The signal can be written as follows: 

where ρ(x,y) is the object in question.  Then the signal as a function of time 

can be written as: 
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Now by setting tGk xx γ=  we can see that S(t) is simply the inverse Fourier transform of P(x).  This can 
be generalized to any line in the object by changing the linear gradient.  If a combination of gradients in 

the x and y direction is applied, the projection through the object will be at an angle ⎟⎟
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Once the projections have been obtained, the image can be reconstructed by any of the techniques 
mentioned in the previous chapter. 
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Figure 38 – Example of Pulse Sequence 
 
These techniques can also be applied to reconstruct 3D images, simply by applying a third gradient in the 
z direction. (References: Lai & Lauterber, J. Phys, E. 13, 747 (1980); Shepp, JCAT, 4, 94 (1980)) 
 
Details of Projection 
 
(1) Signal to Noise 
 
In one dimension, NxSNR ∆∝ , where ∆x is the pixel size and N is the number of times the 
experiment is repeated.  In three dimensions, NVSNR ∆∝ ; therefore, to reduce the size of the voxel 
and maintain the same SNR, we must increase the number of experiments by quite a lot.  For example, to 
reduce the voxel size by 2, the number of experiments must increase by 64! 
 
(2) Gradient Size 
 
The size of the gradient must be large enough to overcome the inhomogeneities in the magnetic field, i.e.: 
 

widthlineogeneitiesingradient +∆>∆ homωω  
 

However, if the gradient is too big, then noise will be introduced since the signal is too spread out.  We 
need to have a large signal to over a small ∆ω to overcome the noise. 
 
(3) Sampling Rate 
 

 46



SI = sampling interval. xGbandwidth
SI x∆==∆= γω1

 

 
where ∆x is the size of the region of interest being imaged, or in other words, the field of view (FOV). 
 
(4) Resolution 
 
The number of pixels in an image is determined by the number of points that are sampled during one FID.  
If there are 256 sampled points, then there are 256 pixels in one dimension.  The size of the pixels is 
determined by the FOV and the # of pixels: 
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For an image containing n x n pixels, each acquisition gives us n samples.  We therefore require n 
acquisitions.  Similarly, in 3D, we require n2 acquisitions. 
 
Slice Selection 
 
To define a plane in the z direction of an object, we can apply a gradient in the z direction and use an RF 
pulse with a well defined frequency range. 
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zGB z∆=∆  implies that 
zG

z
γ
ω∆

=∆ , where ∆ω = RF bandwidth. 

 
To obtain a perfectly rectangular pulse of width, ∆ω, the pulse must have sinc shape in the time domain.  
It is impractical however to have a pure sinc function since it cannot be applied from t = -∞ to t = ∞.  It is 
necessary to truncate the sinc function, and it is usually limited to one lobe.  This truncation causes 
“ringing” in the RF pulse as seen in the frequency domain. 
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Figure 39 – Ideal and Realistic RF Pulse Shapes 
 

If the gradient is simply applied at the same time as the RF pulse, there will be no signal detected.  This is 
due to the fact that some spins will reach the transverse plane before the RF pulse is turned off.  Since the 
gradient is still on, the spins will be dephased by an amount equal to τγ zGz∆=∆Φ , where τ is the time 
that the gradient is on and the magnetization vector is in the transverse plane.  τ is actually equal to half 
the total time that the gradient is on.  To compensate for this, apply the reverse gradient for a time τ in the 
z direction to rephase the spins by the amount ∆Φ.  This is called compensatory gradient. 
 
This will give a gradient echo, i.e. when the spins are refocused from the effects of the previous gradients 
(this will not correct for magnetic inhomogeneities like 180o pulse). 
 

RF 
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Figure 40 – RF Pulse and Compensatory Gradient 
 

A different gradient Gz could be applied, as long as the angle ∆Φ is the same (i.e. a smaller gradient could 
be applied for a longer time or a stronger gradient could be applied for a shorter time). 
 
Gradient Echo Pulse Sequence 
 
So far we have discussed slice selection and projection formation.  Putting all of this together, the 
following pulse sequence will give us a gradient echo signal for various projections.  Once the projections 
have been obtained, the reconstruction algorithms may be applied. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 41 – Gradient Echo Pulse Sequence
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Spin Echo Pulse Sequence 
 
To create a spin echo, apply a 180o pulse at time t = TE/2. At time TE, the spins will refocus and an echo 
will be formed.   The pulse sequence would look something like this: 
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Figure 42a – Incorrect spin echo pulse sequence 
 

This sequence will not produce a signal for the same reason that a compensatory gradient needed to be 
added to Gz.  The first half of the gradients in x and y will dephase the spins as they are attempting to 
rephase and create the spin echo.  To correct for this effect, we must apply a compensatory gradient.  This 
can be done by either applying reverse gradients just before the read-out gradients or we could apply the 
same gradients before 180o pulse since the 180o pulse will reverse their effect. 
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Figure 42b – Correct spin echo pulse sequence 
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Figure 43 – Correct Spin Echo Pulse Sequence 
 

Phase Encoding 
 
Can we use the gradient dephasing for something useful?  If we apply a gradient in the y direction without 
refocusing the spins, we will obtain information about the frequency distribution of the object in that 
direction.  If the gradient is applied for a constant time τ, then the spins will be dephased by an amount: 
 

τγ yGyy =∆Φ  
 

The signal can then be represented by: 
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where 
 

τγγ yyxx GktGk == ;  
 
This looks parallel in x and y, but τ is a constant, while t evolves, thus giving us spatial encoding by 
taking the Fourier Transform.  This puts a phase twist in y.  One way of looking at this is for each x, we 
are measuring a single Fourier component of the data along y.  To get the whole object, we must sample 
multiple Fourier components in ky and then take the inverse Fourier transform.  To change ky, we can 
either change Gy τ.  Each point sampled from the FID gives us one point in kx at a constant ky.  The entire 
k-space can be rastered through in a rectilinear fashion by changing the value of ky and repeating the 
experiment.  Each value of ky is called a phase encoding step. 
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ky  
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Figure 44 – Digitization of k-space 
 

To obtain an n x n image, we acquire n points in the FID and then repeat the experiment n times, each 
time with a different value of ky.  To reconstruct the image, simply inverse Fourier transform the acquired 
data.  This experiment is called spin warp. 
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Figure 45 –Spin Warp Pulse Sequence 
 

This method can be applied to 3D imaging as well.  Simply add Gz gradient in the same manner that a Gy 
gradient is applied.  If a slice selective Gz is applied as well, we will obtain multiple finer slices within the 
selected slice.   
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e.g. If we want 1 mm slices 
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which is a very large gradient.  Instead, we can obtain a 15 mm slice (with Gz = 0.5 Gauss/cm) and use 16 
phase encoding steps in z.  This is a good way of getting thin slices, but it can be a lengthy experiment. 
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Figure 46 – 3D Spin Warp Pulse Sequence
 
Multiplanar Imaging 
 
There are long delays in viewing a large 3D objects because each slice must have time to relax before the 
experiment may be repeated.  For example, if we want to obtain a 256x128 image with Nave = 4, then if 
TR = 300 ms, it takes 4.3 minutes to acquire one slice.  If 10 slices are to be acquired, the total 
experiment requires 3 hours.  Is there a way of obtaining stack images faster? Since T2 ~ 0.1 T1, there is a 
lot of dead time since TR is on the order of T1.  We can image other slices during this time by either 
shimming Bo or by changing the center frequency of the 90o RF pulse. 
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Figure 47 – Incorrect Fast Spin-Echo Pulse Sequence 
 

The 180o pulses are “hard” pulses (i.e. they tip every spin in the sample).  To avoid perturbing spins that 
are not involved in the slice, we must make the 180o pulse a “soft” pulse.  It will look like the 90o pulse, 
will be centered around the same frequency and a slice selective Gz must be applied at the same time.  
The number of slices which can be obtained from this sequence is now dependent on TE and the total data 
collection time.  The former is determined by the contrast that is desired in the image (as will be shown 
later) while the latter is dependent on gradient strengths, etc. 
 
The total number of slices collected can be determined from  
 

( ) FtimecollectiondataTE

TRslicesof
++

=

2
1

*  

 
where F represents any additional time needed for gradients, etc 
 
Example: If data collection time  = 15 ms and TE = 30 ms, then the time between slices is ~ 40 ms. 
 If TR = 500 ms  12 slices can be collected 
 If TR = 2000 ms  50 slices can be collected 
 
Is this more efficient?  It all depends on the number of averages (Nave) which are needed to get adequate 
SNR.  If Nave < # of slices needed, 2D is more efficient than the 3D method.  However, the 2D multiscale 
approach may be less efficient if the total number of slices scanned does not cover the region of interest 
(small TR) and many slice averages are required.  In general, the 2D technique is used.  Only when very 
thin slices are needed or TR is very short is the 3D technique used. 
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Figure 48 – Correct Fast Spin-Echo Pulse Sequence 
 

Image Contrast 
 
Now that we know how to obtain an image, we need to understand what kind of information these images 
are providing us.  The image is not simply a measure of the proton density of the tissue.  The relaxation 
times will influence the image contrast depending on the TE and TR chosen.  To understand these 
concepts, let’s examine the Bloch equations: 
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Solving these equations in the rotating frame on resonance gives 
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T1 Weighted Images 
 
Since different tissues have different relaxation times, can we use this behavior to our advantage? 
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assume TR >> T2  
 
Measure Mx and Mz as a function of TR: 

TR 
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i.e. equilibrium has been reached after 1 pulse. 
 

Signal Intensity 

C = contrast 
between tissues 

C long T1

short T1

TR 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 49 – Signal Intensity as a Function of TR 
 

Therefore,   short T1 ⇒ large Mx ⇒ bright image 
  long T1 ⇒ small Mx ⇒ dark image 
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To ensure maximum contrast between tissues, it is necessary to optimize TR.  If we assume a small 
difference in tissue T1 where the largest signal intensity difference? 
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Now maximize with respect to TR: 
 

( )
( ) ( )

1

1
2

1

13
1

2
1

10

0

1

11

TTR

T
TR

T
e

Td
T

eTR
T

eM
TRd
SId

T
TR

T
TR

T
TR

o

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⋅

−==

−

−−

 

 
Therefore, when TR = T1, we obtain a maximum contrast between two tissues with small differences in 
T1.  Is contrast what we really want to maximize however?  It may be best, depending on other imaging 
constraints (i.e. # of slices) to maximize the contrast to noise ratio (or SNR). 
 
Note: This derives from Roses’s (1957) concept of features of dots in a background of dots.  Using 
Poisson statistics, he showed that to “see” a feature the difference in the number of dots in the feature and 
the background must be greater than some factor (he suggested 5) times the expected variation of the 
number of dots in the feature. 
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where:  n1 = dots in background/area 
 n2 = dots in feature/area 
 s = area 
 k = constant (≅5) 
 
Therefore, 
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If we reduce TR, we will be able to perform more averages (which reduces the noise) in the same imaging 
time.  However, the decrease in TR will decrease the contrast between the tissues.  It is necessary to 
optimize these two conflicting parameters: 
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Now maximize with respect to TR: 
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Therefore, to maximize the signal to noise, choose TR = T1/2.  For example, for gray-white matter in the 
brain, choose TR ~ 800 ms, since T1(gray) ~ 1700 ms and T1(white) ~ 1500 ms. 
 
If we want to measure T1, we should measure multiple points in order to get an appropriate fit.  We can 
obtain a nice linear equation to fit T1 to: 
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There remains one question:  How do we measure T1 most efficiently?  i.e. for a given total image time, 
how many points would you measure with how many Nave?  It all depends on the total imaging time, T1 
(sample) and T1 (range of samples). 
 
Inversion Recovery 
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Figure 50 – Inversion Recovery Pulse Sequence 
 

Assume that TR >> T1
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Since TR >>  T1, Mx(8) = Mx(4) i.e. equilibrium is immediately reached.  This is much like the SR 
equation, however the dynamic range is increased by 2. 
 

Signal Intensity 

C = contrast 
between tissues 

C long T1

short T1

TI 
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Figure 51 – Signal Intensity as a Function of TI 
 

Again, optimum contrast can be defined.  If TR is not >> T1, things become tricky.  Nevertheless, we can 
use SI(TI) to measure T1 as in SR.  This is traditionally done when total time is not at a premium, as in 
spectroscopic measurements.  We can also make images which reflect T1 or T1 rate (1/T1). 
 
T2 Weighted Images: 
 
To reflect T2 differences in tissue, do a spin echo experiment 
 
 

3   4 1   2 

90 180 

TE 
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180 90  
 
 
 
 
 
 
 
 

TR 
Figure 52 – Spin Echo Pulse Sequence 

 
If TR >> T1, then  
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What is TR is not >> T1? 
 

6 2   3 0   1 

90 180 

    4   5 

TR – 1/2TE 

180 90 

TE 

 
 
 
 
 
 
 
 
 
 
 

Figure 53 – Spin Echo Pulse Sequence 
 

As before, compute Mz and look at the signal intensity proportional to Mxy after the 90o pulse.  
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Now compute Mxy
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If TE << TR, then 
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Figure 54 – Signal Intensity as a Function of TE 
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Therefore,  long T2 ⇒ bright image 
  short T2 ⇒ dark image 
 
Where is the maximum contrast point? 
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For maximum contrast, choose TE = T2. 
 
What if TR ≈ T1?  Remember that long T1 ⇒ dark image and a long T2 ⇒ bright image.  These are 
competing contrasts.  Often, tissues with long T2 have long T1. 
 

Signal Intensity  
 

long T2 & T1

short T2 & T1 

TE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 55 – Signal Intensity for Both Long and Short T1 and T2
 

So for long TE, T2 will dominate, but for short TE, T1 will dominate. 
 
Example 
 
T1 = 500 ms  T2 = 50 ms 
Set TR = T1 (maximum T1 contrast) 
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If TE = 30 ms (typical value), then ∆SI ≈ 0 
 
 Signal Intensity 
 

long T2 & T1

short T2 & T1 

30 

TE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 56 – An Example of Poor Parameter Choices
 
Thus the maximum contrast T1 weighted image is in fact a very poor choice if TEmin = 30 ms.  To get 
maximum T1 contrast from SE images, you need to set TEmin as small as possible. 
 

Time Parameter T1 Weighted T2 Weighted ρ Weighted 
TR T1/2 >> 3T1  >> 3T1

TE TEmin T2 TEmin

 
Small Tip Angle 
 
What if the tip angles are not exactly 90o or 180o? 
 

2   3 0   1 
gradient echo 

4   5 

α α  α  
 
 
 
 
 

TRTR  
 

Figure 57 – Small Tip Angle Pulse Sequence 
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Now assume that all transverse magnetization (Mx) is lost in TR. 
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We could march down to 4 and 5, but that would get messy.  A better way of looking at this problem is by 
assuming that there have already been many pulses prior to 0 and that the system has reached equilibrium.  
In this situation, Mz(2) = Mz(0). 
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If α = 90o, then we recover ( )
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We can maximize this expression with respect to α to obtain an expression for α which maximizes Mx for 
a give TR.  This angle is known as the Ernst angle.  However, the Ernst angle may not give the maximum 
T1 contrast-to-noise ratio.  The T1 contrast is large for large α and is small for small α (SNR drops for 
both cases). 
 
For a real gradient echo experiment, there is also a T2

* decay term.  The signal intensity is therefore: 
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This also assumes that T2 < TR.  If this is not the case, “steady state” can occur and new expressions are 
needed. 
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CHAPTER 8: CHEMICAL SHIFT IMAGING 
 
 

How can we combine spectral and spatial information?  In conventional NMR imaging, there have 
historically been three models: 
 

(1) Point methods (e.g. TMR to define a point and then move the point or the object) 
(2) Sensitive lines 
(3) Sensitive planes and volumes 

 
How can we spatially encode without disrupting the chemical shift information?  Typically, imaging 
gradients are on the order of 0.1 – 1.0 G/cm or 1.0 – 10.0 ppm/point, as expected since we need ∆ωgradient 
> ∆ωlinewidth / pixel.  If chemical shifts are greater than the line widths, then we have: 
 

linewidthpixelgradientshift ωωωω ∆>∆>∆>∆  
 

Two spectral lines 

* 

ω

 
 
 
 
 
 
 
 
 
 
 
 

Figure 58 – Convolution of an Object With Two Spectral Lines 
 

We get two separate images, one for each peak.  Obviously though, this places severe constraints on 
homogeneity and requires large chemical shifts and narrow line widths.  This is a good technique for an 
element like Fluorine.  For protons, which have a chemical shift of ~ 5 ppm, this is impossible. 
 
Why not then simply deconvolve the spectra with the projection acquired using a larger (relative) 
gradient? 
 
 
 
 
 
 
 

Figure 59 – Chemical Shift Artifact 

*
a                                          b                                                          c 

 
This can be done, but this supposes that we know (a) in Figure 59 everywhere and of course it is what we 
are hoping to measure, since it varies across the object.  The image (c) which results is exactly what is 
seen with the chemical shift artifact.  The shift can be quantified as follows: 
 

In cm In Pixels 
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The problem would get very complex for more complex lines shapes as well. 
 
3-D Chemical Shift Imaging 
 
What we would really like to do is read our signal without the presence of a gradient. 
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How can we spatially encode?  Why not use phase encoding: 
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This becomes a 3-D object with two spatial dimensions and one frequency dimension.  It is possible to 
perform a 4-D chemical shift image if we also phase encode in the third dimension.  The frequency axis in 
Figure 61 includes both δ and Bo inhomogeneities; therefore, the lines are actually curved.  If δ is kept 
constant (i.e. a vial of water), the inhomogeneities in Bo can be mapped using this technique.  It should be 
noted that this technique is very efficient at low concentrations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 60 – 3-D Chemical Shift Pulse Sequence 

RF 

Gz 

Gx 

S(t) 

90 180o

Gy 

 

 67



 
 

ω

y 

 ∆ω

 
 
 
 
 
 
 
 
 
 

x  
 
 
 
 

Figure 61 – 3-D Chemical Shift Image 
 

Phase Contrast Imaging 
 
At higher concentrations, it is possible to phase encode the chemical shift instead of the position.  This is 
done by off-setting the spin echo and the gradient echo in a typical spin echo pulse sequence.  This can be 
done by moving the 180o pulse by τ/2.  The echo still occurs at t = TE since the gradient echo dominates 
the inhomogeneities.  The spin echo will occur at TE - τ.  Since the spin echo refocuses the chemical 
shifts in an object, different chemical species will pick up different phase shifts during the time τ between 
the spin echo and the gradient echo. 
 180o
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90 

SE      τ      GE 

τ/2

Gy 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 62 – Phase Encoding Chemical Shift (SHUFFLEBUTT sequence) 
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( )Hzτδωτ =∆=∆Φ  
 

Therefore, 
 

( ) ( ) ( )∫ ++= δδρτ δγγ dxdydeyxntS tynGxtGi yx,,,,  

 
By sampling a range of τ values, we can raster through k space.  By sampling m different τ steps, we can 
obtain an m-point frequency spectrum. 
 
This technique gives great spatial resolution but less spectral resolution.  This is a valuable when the 
spectrum is simple (fat and water) since you can keep one “higher resolution” spatial axis.  For example, 
proton imaging is mostly dominated by lipids and water which are 3.5 ppm apart and are present in molar 
concentrations.  In this case, we can further simplify the SHUFFLEBUTT sequence. 
 
Dixon Method 
 

Set 
( )Hzδ

τ
2

1
= .  This is designed to make lipid and water 180o out of phase:  therefore, the image will be 

a difference of water and fat (W-F).  By taking a conventional “in phase” image where the spin echo and 
gradient echo occur at the same time, you obtain an image of W+F.  Adding these two images will give a 
pure water image and subtracting the two will give a pure fat image. 
 
 Water + Fat  In phase 
 Water – Fat  Out of Phase (OOPS) 
 
 Add  2  Water A pure water image 
 Subtract 2  Fat  A pure fat image 
 
This technique will work if there are only two spectral lines.  We are also assuming that we are looking at 
the “real” data and not just its magnitude. 
 
Selective Saturation/Excitation 
 
If you spectra is simple, and we have good homogeneity, we could produce a water image by only 
exciting the water line.  This can be done by tuning the FR pulse to the water frequency.  Equivalently, 
we could presaturate the fat line by applying an RF pulse tuned to the fat frequency prior to the 
experiment.  This will cause the fat spins to lie in the transverse plane and as such, when the first slice 
selective 90o pulse is applied, only the water spins will provide a signal.  Inhomogeneities in the magnet 
will cause the water and fat spectral line to broaden.  Due to this line broadening, the pre-saturation pulse 
may not saturate all of the fat spins but may saturate some of the water spins.  To avoid this, the Bo 
inhomogeneities must be made as small as possible by shimming the magnet. 
 
This type of chemical shift imaging is important when dealing with very low concentrations, i.e. lactate.  
In-vivo lactate has a concentration on the order of mM while water has a concentration on the order of 
80M. By performing a water suppression pulse, it might be possible to see the lactate.  Unfortunately, the 
chemical shift of lactate is identical to the chemical shift of fat.  The lactate line is therefore buried in the 
100 M line of fat.  We can suppress the lipid line base on the J-coupling. 
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Binomial Excitation 
 

δ = frequency difference 
between the wanted and 
unwanted peaks 

δτ 2/1=

  45                        45  
 
 
 
 
 
 

Figure 63 – Binomial Excitation Pulse Sequence 
τ 

 
What do we see? 
 

M1 

M2 

⇒ 

M1 M1 

M2 

⇒ 
45 

M2 

τ

⇒ 
45 

 
M1   M2  

 
 
 
 
 
 

Figure 64 – Schematic of Spins Undergoing Binomial Excitation 
 

If we made the second 45o pulse negative, we obtain a signal from M1 as opposed to M2.  We can only 
see one peak IF we can clearly separate each peak over the whole object (i.e. small inhomogeneities). 
This kind of water suppression is needed to do in-vivo proton CSI (3-D).  We can also perform higher 
order binomial excitations (1:2:1, 1:3:3:1, etc.), to give more precise excitations. 
 
STIR – Short TI Inversion Recovery 
 

Signal 
Intensity 

fat 

water 

 
 
 
 
 
 
 
 TI 
 
 
 
 
 
 
 
 

Figure 65 – Null Point TI 
 

By performing an inversion recovery sequence, we can choose TI such that the fat signal is passing 
through its null point.  This method is very dependent on the values of T1. 
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CHAPTER 9: FLOW IMAGING 
 
 

(1) Time of Flight (TOF) or Flow Related Enhancement (FRE) 
 
 

TR V 
∆x 

stat 

flow 

d 

V 

stat  
 
 
 
 
 

∆x = V (TR)  
 
 

d 
 
 
 

Figure 66 – Imaging Spins Flowing With Speed V 
 

What is the signal for stationary and flowing spins?  (assume a 90o – 90o pulse sequence) 
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The signal will actually fall off at high V leading to “flow void”: absent signal within fast moving blood 
vessels (Figure 67).  This is due to the fact that during a spin echo, the spins will move out of the slice 
during TE/2: V > 2d/TE. 
 
(2) Phase Velocity Imaging 
 
If we turn on a gradient during the experiment, the spins will accumulate some phase.  If the gradient is 
turned on immediately after the 90o pulse for a time t, then the phase that is accumulated is:  

.  In a constant gradient, if two spins are located at x = 0, one is stationary and one is 

moving at velocity V, then ∆B = G
∫ ∆=∆ Bdtγφ

x x. 
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Figure 67 – Signal Intensity as a Function of Velocity 

Actual SE 

Paradoxical 
enhancement 

GE 

theoretical 

SI 

V 

 

2

00 2
1

0

GVtGVtdtGxdtB

B
tt

moving

stationary

γγγ ===∆

=∆

∫∫
 

 
For a spin echo experiment, the phase accumulated before the 180o pulse is reversed and the phase 
accumulated after the 180o pulse is additive: 
 90                         180 
 
 
 
 
 
 

G  
 
 

Figure 68 – Spin Echo With Gradient 
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For a multi-echo experiment, 
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Figure 69 – Multi-echo Experiment 

 
We know what the phase accumulation is for S1.  What about for S2? 
 

(1) Phase accumulated before the first 180o pulse is positive since it is “flipped” twice. 
(2) Phase accumulated between the 180o pulses is reversed. 
(3) Phase accumulated after the second 180o pulse is positive again. 
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There is no net phase accumulation on the second echo (assuming constant V).  This is actually true for 
all even echoes.  Moving spins show no phase shift on even echoes.  We still have a net phase shift on all 
odd echoes.   
 
Is it useful?  Look at a geometric interpretation of even echo rephrasing. 
 

TE/2         TE               TE/2 

Equal areas on top on bottom 
 

φ  = area of ∫ Gxdtγ  

     = ( )tGVtγ  

t 

Vt  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 70 – Geometric Interpretation of Even Echo Rephasing 
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How can we use this?  Lot of ways!  GVTE ⎟
⎠
⎞

⎜
⎝
⎛= 2

4
1 γφ  

 
(1) Phase encode 

 
Note that (again!) we have a phase term proportional to a gradient and a quantity of interest 
(velocity) … why not phase encode!  (Figure 71) 
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 This gives us a 3-D object with the third dimension being the z-axis velocity. 
 

(2) Zebra Imaging 
 

2-D FT imaging gives a phase-velocity relationship:  , where k depends on the 
duration and amplitude of G

2TEkVx∝∆φ
x.  Other gradients (Gz and Gy) affect the signal to a lesser extent 

since they are on less long.  If the flow is laminar, then the phase shift is proportional to velocity. 
 
In a magnitude image, we are insensitive to phase.  We can display the “imaginary” component of 
the signal to get: 
 

( )φsin∝SI  
 

(a) for a small φ, VSI ∝∝ φ  
(b) for a large φ, we get redundancy 
 
How can we clear this ambiguity? 
 

1. Put on a “first order” phase shift mX, such that φ = kx.  We can do this by displacing 
the echo in the data collection period – a translation in t = phase shift in w.  If we 
have moving spins, their phase shift is additive with the stationary phase shift, such 
that Vkkx '+=φ  (Figure 72).  We can now see large phase shifts and if there are 
slower flow rates, there is no ambiguity.  If we know k, we can measure V. 
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Figure 71 – Velocity Encoding Pulse Sequence 
 

 

Zebra Strips                                                                              ∆φ α kV 

 
 
 
 
 
 
 
 
 
 
 

Figure 72 – Zebra Imaging 
 

(3) Projective Imaging 
 
Vessels do not lie in a plane often.  In order to see them, we need to take projections, either in acquisition 
or post-processing. 
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Figure 73 – Projection Image Along z 
 

To do this with MR, simply turn off the slice selective gradient and use hard pulses.  It is also possible to 
acquire a 3-D data set and project in post-processing.  How can we “pick out” the blood vessels?  In 
conventional x-ray angiography, inject a lot of x-ray dye with iodine to absorb x-rays.  In Digital 
Subtraction Angiography (DSA), use less x-ray dye but subtract a background image.  All that is left is 
what change which will be the blood vessels (without dye in background image and with dye in second 
image).  In MR, we use the concept of phase contrast. 
 

1. If we take an “imaginary” image ( )φsin∝SI , then 0=stationarySI  and  for 
small V (or k).  If we took an “imaginary” projective image, we would have a flow projective 
image (an MR arterio/venogram).  However, this assumes a good phase stability across the 
whole object which is hard to get at high field strengths. 

VSI moving ∝

2. How about a subtraction?  If k or V is large, we get large phase twists across the vessel. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    stat              moving        stat              moving    
+ = + = 

(a)                                                                            (b) 
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Figure 74 – Fast vs. Slow Moving Spins 
 

Subtract a from b = Flow image. 
 

1. large vs. small V – diastolic/systolic gating 
2. large vs. small k – change the gradient waveform 

 
(4) Flow Compensation Gradients 
 
Let’s start with a 2 echo experiment.  We know that the second echo is rephrased (i.e. k = 0).  Now play 
some games! 
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TE/2 
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TE/2 
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Figure 75 – Gradient Moment Nulling 
 

A bipolar readout gradient will have k = 0 for a S.E.  A binomial 1:2:1 readout will have k = 0 for a G.E.  
If the gradients are not exactly so balanced, then k ≠ 0.  Higher order binomial gradient pulses null ∆φ for 
higher order motions (e.g. acceleration is nulled with a 1:3:3:1 sequence).  Therefore, another way of 
doing subtraction angiography is to interleave sequences with different k, (k = 0 and k ≠ 0).  Subtracting 
one image from the other will provide flow information. 
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CHAPTER 10: MICROSCOPIC MOTIONS 
 

 
Is it possible to measure the diffusion of water with MR?  Assume a random walk model.  In this 
situation, there is no average displacement, i.e. <x> = 0.  But, <x2> = 2Dt, where D = diffusion 

coefficient.  In 3-D, <x2> = 6Dt, (D = cm2/s).  Thus, tx ∝2 .  How does this affect the MR signal?  

What is the phase accumulation of one spin? 
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There is no net phase accumulation because the average is zero.  However, if we look at higher order 
terms: 
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For random walk, we get a Gaussian distribution of displacements (x), leading to a Gaussian distribution 
of phases.  Therefore, 
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We can obtain a measure for D now:  322

ln

δγ g
S
S

D o
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−= .  Diffusion effects vary as 1/t3.  This is different 

from T2 effects which vary as 1/t.  It is therefore possible to separate T2 effects from diffusion effects. 
 
For a typical spin echo experiment, the 180o pulse does not completely refocus diffusion effects, because 
the inhomogeneities aren’t static.  For a spin echo with constant gradient g, 
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How does this predict Hahn vs. CPMG? 
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Figure 76 – Hahn vs. CPMG Pulse Sequence 
 

For a multiecho sequence, # of echoes 
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and the attenuation goes down as n increases.  So for large n:  
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It is also possible to change the gradient strength or the duration of the gradient.  Look at pulsed 
sequence: 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 77 – Stejskal-Tanner Sequence 
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This is known as the Stejskal-Tanner equation.  It can be used in imaging if the read gradient is small or if 
it is explicitly corrected for. 
 
What happens if <x2> ≠ 2Dt?  This could happen if barriers prevented free diffusion.  This is observed in 
tissue and is labeled restricted diffusion.  In vivo, we may actually get retarded diffusion. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 78 –Restricted Diffusion 
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CHAPTER 11: RAPID IMAGING 
 
 

 

Imaging time = aveN
excitationPES
PESTR

/
 where PES = Phase Encoding Steps.  To reduce this time, we 

must reduce one of the factors. 
 
(1) To reduce Nave (NEX) implies high SNR, an increased Bo and decreased resolution. 
(2) “Half Fourier” or “half NEX”: Since the object is a real function, its Fourier Transform shows 
conjugate symmetry: 
 

B      A 
 
 
 
A*      B* 

kx

ky 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 79 – Conjugate Symmetry of k-space 
 

So in principle, half of k-space is conjugate. 
 (a)  half in time ⇒ short TE’s 
 (b)  half in pseudo time ⇒ lower imaging time (labeling half NEX) 
 
3a) Reduce TR – FLASH/GRASS –  
 - Implies gradient echoes to avoid ML inversion 
 - Small tip angles 
 - Steady state or “spoiled” 
 
3b) “Turbo” FLASH – Very short TR/TE (but this leads to little T1/T2 contrast) – To improve the contrast, 
perform magnetization preparation: 
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Figure 80 – IR Turbo Flash 
 

(4)  Increase # of PES/RF excitation 
 
 (a) RARE or “Fast Spin Echo” – Do a CPMG with addition of PES during each echo 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 81 – Fast Spin Echo Sequence 

 
Currently, there are 8-32 180o pulses per excitation.  The advantage is that this is 8-32 times faster than 
conventional T1 and T2 contrast images.  The disadvantage is that lots of 180o pulses produce RF heating 
over a long acquisition. 
 
(b) Spiral Scan: 
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Figure 82 – Spiral Scan Through k-Space 
 

Currently, interleave 8 such scans to cover k-space. 
 
(c) 
 

kx

ky
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 83 – EPI Scan Through k-space 
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