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HST.584 / 22.561 Problem Set #3 Solutions

Marking Scheme: Question 1 — 3 points, Question 2 — 3 points, Question 3 — 4 points

1) The easiest approach is to start from equilibrium and then figure out the magnetization
components at the different time points. Tracking through the pulse sequence, we find
the following components:

Event M ongitudinal Miransverse
Start at equilibrium Mo 0
Apply = pulse -Mo 0
MO + (MZ(O) _ MO e-TI/Tl
TI Interval = Mo(1 - e Tl) 0
Apply /2 pulse 0 Mo(1 - 2¢7"™)
-TUTI\ o-(TR-T)/T2
TR - Tl interval Mo(1 - e TRTT) Mof1-2¢ - ~())e o
Apply 7 pulse -My(1 - e TRV 0
Mo + (-Mo(1 - e TR MYe T7TE
TI Interval 0 :( Mggl 0TV, )e-TR/Tol)) 0
Apply =/2 pulse Etc. Etc.
So, in terms of the labels given in the question and assuming we have reached a steady-
state:
Time Mlongitudinal Mtransverse
a Mo(1 - e-(TR-TI)/Tl) 0
at “Mo(1 - e-(TR-TI)/Tl) 0
b Mo(L - 0g TVTT | e-TR/Tl) 0
b+ 0 Mo(1 - 2 VT 3 e—TR/Tl)
c Mo(L - e-(TR-TI)/Tl) 0

The signal is maximized immediately after the 7/2 pulse (i.e. there are no echoes; our
transverse magnetization simply decays away). The steady-state signal amplitude is thus
Mo(l _ 2e-TI/T1 + e-TR/Tl)

2-a) Signal amplitude is determined by our transverse component.
After 0;: M, = Mocos60 = Mo/2, Myy = Msing0 = M, /3/2
Prior to 0,: My(TR) = M,(0)e™ + My(1 - ™) = 0.591Mg, My, = 0
After 02 M; = M,(TR") cos60 = 0.295 Mg, Myy = M,(TR") sin60 = 0.512 My

2-b) For the 2" FID to have zero amplitude, we require M;(TR") = 0.
M (TR) = Mg cosf; e 7™ + Mo(1 - e ™) = 0
0, = 102.8°



2-c) We now require Myy(0") = My (TR™). For gl = 25°, Myy(0") = 0.423 M.
Therefore, M,(TRY) = Mo c0s25 e™° + Mg (1 - e®) = 0.923 M.
Myy(TRY) = My(TR) 5inf; = M,,(0").
0,=27.3°

2-d) Ignoring T; effects, we find that My, (0") = sin0;, Mxy(TR+) = cos0; sind,. We wish
to equate these and also maximize them. Clearly, the simplest solution for this is when 6,
=45°, 6, = 90°.

3) Rotation matrices can be used to track pulses and also phase evolutions. The rotation
matrices are defined as:

1 0 0 cosd 0 -—sind@ cosd singd O
R(@)={0 cosd sind|,R ()= 0 1 0 |.,R,(#)=|-sin@ cosd O].
0 -sind cosé@ sind 0 cosé 0 0 1

All that remains is to write our pulse sequence in terms of these operations (and make
sure we have the correct order, as the matrices DO NOT commute with each other).
Accumulation of phase ¢ can be written as a rotation about the z-axis of angle ¢.

a)
0

M . = R, ()R, (90)R, (#)R, (90)M,| 0
1
cosg sing 01 O Of cosg sing Of1 O O 0
=|-sing cosg 0|0 O 1f-sing cosg OO0 O 1|M,0
0 0 1{0 -1 0 0 0 1|0 -1 0 1
cos¢sin ¢
=M,| —sin’¢
—COS ¢

b) First, let’s determine the effects of the 90°x — T — 180° sequence:
0

M. =R, (#)R,(180)R,(#)R, (180)M,| O
1
cosg sing O0||-1 0 O cosg sing 0|-1 0 O 0
=|—-sing cosg 0 0O -1 Of-sing cosg O 0O -1 O0|M, O
0 0 10 o0 1 0 0 10 o0 1 1



We see that we have all our transverse magnetization rephased after 2t — this is just a
standard spin-echo sequence. In part a, we found the two transverse components in terms

of the angle ¢; now we can just integrate those components across the uniform
distribution stated in the question.

2r
szijMosinqﬁcosyﬁdqﬁ:O
27r0
1% . M
M, =— [-M,sin?gdg=——2
y 27r~! o SIN” gd¢ 2

c) Note: There is a typo in the question. The general sequence should have read 6x — t —
20°, not 6 — T — 0°. | marked either answer correct however.

First, the correct sequence:

0

M. =R, (#)R (20)R,(#)R (6)M,| 0

1
cosg sing 0|1 0 0 cosg sing 0f1 0 0 0
=|-sing cosg 0|0 cos26 sin28|—-sing cosg 0|0 cos@ singd M, 0
0 0 10 -sin26 cos26 0 0 1f0 -sin@ cosd 1

(sin 2¢ + 2sin ¢) sin @ cos® @
=M,| —sin @ +sin & cos’ H(2cos ¢ + 2cos’ @)
cos® @ —sin” 6cos O(1+ 2cos @)

Performing the same integration:
2z
M =2i|\/|0 [ (sin2g -+ 2sin ¢)sin O.cos’ g = 0
T 0
2z

M e =iM0 I—sin9+sin 0 cos” 6(2cos g+ 2cos” g)dg = —M,sin® 9

0

Now, with the typo sequence given in the question:



0
Mnet = Rz (¢)Rx (Q)Rz (¢)Rx (H)MO O
1
cosg sing 01 0 0 cosg sing 0f1 0 0 0
=|-sing cosg 0|0 <cos@ sin@|—-sing cosg 0|0 cos@d sind |M, 0
0 0 1|0 -sin@ cosé 0 0 1|0 -sin@ cosé 1
35in 2¢(sin @ + 5 sin 260) + 3 sin ¢sin 260
=M,| —sin® ¢sin & + Lsin 20(cos ¢ + cos’® ¢)
1—sin® O(1L+ cos ¢)

Performing the same integration:

2z
M e = =M [55in 2(5in 0+ 35in 20) + 3sin gsin 20]dg = 0
7 0
1, L ) M, , . .
M e :gMOJ'[—sm ¢sin @ + £ sin 26(cos ¢ + cos ¢)]d¢=T(sm29—23m9)
0



