6.262: Discrete Stochastic Processes 5/2/11
L22: Random Walks and thresholds

Outline:

e Review of Chernoff bounds
Wald’s identity with 2 thresholds
The Kingman bound for G/G/1

Large deviations for hypothesis tests

Sequential detection
Tilted probabilities and proof of Wald’s id.

Let a rv Z have an MGF gz(r) for 0 <r < r4 and mean
Z < 0. By the Chernoff bound, for any « > 0 and any

re (0,71),
Pr{Z > a} < gz(r) exp(—ra) = exp(vz(r) — ra)

where v, (r) = Ingy(r). If Z is a sum S, = X1 + - + Xn,
of IID rv’s, then 'ysn(r) = nyx(r).

Pr{Sp > na} < min (exp[n(yx(r) —ra)l]).

This is exponential in n for fixed a (i.e., 7/(r) = a). We are
now interested in threshold crossings, i.e., Pr{UJ,,(Sn > a)}.
As a preliminary step, we study how Pr{S, > a} varies
with n for fixed a.

Pr{Sn, > a} < mrin (exp[nyx(r) —ral).

Here the minimizing r varies with n (i.e., 7/(r) = a/n).
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When n is very large, the slope & = /. (rg) is close to 0
and the horizontal intercept (the negative exponent) is
very large. As n decreases, the intercept decreases to r*
and then increases again.

Thus Pr{J,{Sn > a}} =~ exp(—ar*), where the nature of
the approximation will be explained in terms of the Wald
identity.

Wald’s identity with 2 thresholds

Consider a random walk {S,; n > 1} with S), = X744+ X,
and assume that X is not identically zero and has a semi-
invariant MGF ~(r) for r € (r_,r3) with r_- <0< ry. Let
a >0 and ¢ < 0 be two thresholds. Let J be the smallest
n for which either S, > o or S, < S.

Note that J is a stopping trial, i.e., [;—,, is a function of
S1,...,Sp, and J is a rv. The fact that J is a rv is proved
in Lemma 7.5.1, but is almost obvious.

Wald’s identity now says that for any r, r— <r <rg,

E[exp(rS;— Jvy(r))] = 1.

If we replace J by a fixed step n, this just says that
E [exp(rSn)] = exp(ny(r)), so this is not totally implausible.



Elexp(rS;— Jy(r))] =1 (Wald’s identity).
Before justifying this, we use it to bound the probability
of crossing a threshold.

Corollary: Assume further that X < 0 and that »* > 0
exists such that «(r*) = 0. Then

Pr{S; > a} < exp(—-r*a).
Wald’'s id. at r* is E[exp(r*S;)] = 1. Since exp(r*S;) > 0O,
Pr{S; > a}E[exp(r*Sy) | S; > a] <E[exp(r*S;)] = 1.
For S; > «a, we have exp(r*S;) > exp(r*a). Thus
Pr{S; > a}exp(ra) < 1.

This is valid for all choices of 3 < 0, so it turns out to
be valid without a lower threshold, i.e., Pr{U,{S:» > a}} <
exp(—r*a).

We saw before that Pr{S, > a} < exp(—ar*) for all n, but
this corollary makes the stronger and cleaner statement
that Pr{UnZl{Sn > a}} < exp(—r*a)
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The Chernoff bound has the advantage of showing that
the n for which the probability of threshold crossing is
essentially highest is n = a/+/(r*).



The Kingman bound for G/G/1

The corollary can be applied to the queueing time W, for
the ith arrival to a G/G/1 system.

We let U, = X; —Y;_1, i.e., U, is the difference between
the ith interarrival time and the previous service time.

Recall that we showed that {U;; i > 1} is a modification
of a random walk. The text shows that it is a random
walk looking backward.

Letting v(r) be the semi-invariant MGF of each U;, then
the Kingman bound (the corollary to the Wald idenity
for the G/G/1 queue) says that for all n > 1,

PriWy, > a} < Pr{W > a} < exp(-r*a); for all a > 0.

Large deviations for hypothesis tests

Let Y = (Y3,...,Y,) be IID conditional on Hy and also IID
condtional on Hy. Then

f(¥|Ho) _ z": n f(yi | Ho)

. f(yi | Ho)
Def z b Z; = |n==-7
efine y n F(y; | H)

A threshold test compares Y I'_; z; with In(n) = In(p1/po)-

Conditional on H{, make error if }; Zz-1 > In(n) where Zil,
1 <i<n, are IID conditional on H;.



Exponential bound for ¥, Z}

y1(r) = In {/f(y | Hy) exp [rln ;Ey : Hg] dy}

= n{ [/ | H)F (5 | Ho) dy}
At r = 1, this is In(/ f(y | Ho) dy) = O.
0 r To rv =1

slope = ~; (7o)

n ~(r0) =1In(n)/n
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q1(n) < expn[y1(ro) —roln(n)/n]
where q/(n) = Pr{e| H = ¢}

Exponential bound for Y; Z?

() = n{ [ 11 0)exn s Ty}

fly[H1)
= n{ [ 17y | HDS 5y | Ho) dy}
At s = —1, this is In(/ f(y | H1)dy) = 0. Note: ~g(s) =
y1(r—1).
0 r To rt=1
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q0(n) < expnlyi(ro) + (1—70) In(n)/n]
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These are the exponents for the two Kinds of errors.
This can be viewed as a large deviation form of Neyman
Pearson. Choose one exponent and the other is given by
the inverted see-saw above.

The a priori probabilities are usually not the essential
characteristic here, but the bound for MAP is obtimized
at r such that In(n)/n —~;(r)
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Sequential detection

This large-deviation hypothesis-testing problem screams
out for a variable number of trials.

We have two coupled random walks, one based on Hg
and one on H;.

We use two thresholds, « > 0 and g < 0. Note that
E[Z|Hp] <0 and E[Z | H{] > 0.

Thus crossing o« is a rare event given the random walk
with Hp and crossing 3 is rare given Hj.

Since r* =1 for the Hg walk, Pr{e | Ho} <e™“.

This is not surprising; for the simple RW with p; = 1/2,
i Z; = a means that

In[Pr{e | H1} /Pr{e| Ho} = «

Also, Pr{e|Hi} < €.
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The coupling between errors given H; and errors given
Hg is weaker here than for fixed n.

Increasing « lowers Pr{e | Hp} exponentially and increases
E[J|H1] = «/E[Z | H{] (from Wald’s equality since a ~
E[S;| H=1]). Thus

Pr{e | H=0} ~exp(—E[J | H=1]E[Z | H=1])

In other words, Pr{e | H=0} is essentially exponential in
the expected number of trials given H=1. The exponent
is E[Z | H=1], illustrated below.

Similarly, Pr{e | H=1} ~exp(E[J | H=0]E[Z | H=0]).
0 T 1

E[Z | H=0]
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Tilted probabilities

Let {X,; n > 1} be a sequence of IID discete rv’s with a
MGF at some given r. Given the PMF of X, define a
tilted PMF (for X) as

ax,-(z) = px(z) explrz —y(r)].
Summing over z, Y gy, (z) = gx(r)e X" = 1. We view
qXﬂﬂ(m) as the PMF on X in a new probability space with
this given relationship to the old space.

We can then use all the laws of probability in this new
measure. In this new measure, {X,; n > 1} are taken to
be IID. The mean of X in this new space is

B [X] = > zax,(z) =) zpx(z)explra —v(r)]

1 d
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The joint tilted PMF for X" = (X1,...,X,) is then

n
Agn (15 s 2n) = pga(e1, ... szn) exp( ) [rz; — v(r)].
’ i=1

Let A(s,) be the set of n-tuples such that z; + .-z, = sp.
Then (in the original space) pg, (sn) = Pr{Sn = sn} =Pr{A(sn)}.
Also, for each 7" € A(sp),

q)?n,r(xl’ oy xn) = pep(®1,.. . 20) eXp(rsn — ny(r)]
q5,,7(sn) = pg,(sn) exp[rsp —ny(r)],
where we have summed over A(sp). This is the key to
much of large deviation theory. For r > 0, it tilts the
probability measure on S, toward large values, and the
laws of large numbers can be used on this tilted measure.
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Proof of Wald’s identity

The stopping time J for the 2 threshold RW is a rv (from
Lemma 7.5.1) and it is also a rv for the tilted probability
measure. Let 7, = {Tn :sn & (B,a);s; € (B,a);1 <i < n}.

That is, 7, is the set of n tuples for which stopping occurs
on trial n. Letting q;,,,) be the PMF of J in the tilted
probability measure,

ar(m) = > ag, (@)= > pg,(@")explrsn —ny(r)]
xneTn znely,
= El[exp[rSn —ny(r) | J=n] Pr{J =n}.

Summing over n completes the proof.
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