
The system above shows a plant (P) which is a finite order linear time-invariant (LTI) feedback system with two inputs, w (disturbance) and u (actuator), two outputs, z (cost) and y (measurement), and a feedback controller (K). (Image courtesy of OCW.)
Instructor(s)
Prof. Alexandre Megretski
MIT Course Number
6.245
As Taught In
Spring 2004
Level
Graduate
Course Description
Course Features
Course Description
This course uses computer-aided design methodologies for synthesis of multivariable feedback control systems. Topics covered include: performance and robustness trade-offs; model-based compensators; Q-parameterization; ill-posed optimization problems; dynamic augmentation; linear-quadratic optimization of controllers; H-infinity controller design; Mu-synthesis; model and compensator simplification; and nonlinear effects. The assignments for the course comprise of computer-aided (MATLAB®) design problems.