
 
 

    

 

             
            

              
      

               
              

           
              

                    
        

    

   

  

                
        

Performance Engineering of Software Systems 
Massachusetts Institute of Technology 6.172 
Prof. Charles E. Leiserson and Prof. Julian Shun Handout 10 

Homework 6: Custom Memory Allocators 

[Note: This assignment makes use of AWS and/or Git features which may not be available to 
OCW users.] 

1 Introduction 

Project 3 requires you to examine the complex real-world problem of high-performance memory 
management. You will implement a serial memory allocator that implements the malloc(), 
free(), and realloc() functions (the C memory management API). In this homework, you will 
implement different versions of such an allocator. 

Then, you will explore extensions to the memory management API for cases in which a cus-
tom memory allocator is useful. In particular, you will complete implementations for a “wrapped 
allocator,” a “packed allocator,” a “fixed aligned allocator,” and a “smart allocator.” 

You should start installing OpenTuner immediately; it will take about 10 minutes to install, 
and starting it before you look at the code will let you have it ready once you need it. Please 
ensure that you are logged into your Amazon VM. 

$ sudo apt-get install python-setuptools 

$ sudo easy_install pip 

$ sudo ./install_opentuner.sh 

More detailed instructions are in the README. You can open up another ssh connection to your 
VM to work with while OpenTuner is being installed. 
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Performance 

Unlike in previous assignments, you will be evaluating your custom allocators in terms of space 
utilization and throughput. 

• Space utilization is the peak ratio between the aggregate amount of currently allocated 
memory (M) (i.e., allocated via your custom malloc() and not yet freed via your custom 
free()) and the size of the heap (H) used by your allocator. The optimal ratio is, of course, 1. 
The space utilization U is calculated as follows: 

U = max{M,40KB} /max{H,40KB} 

• Throughput is the average number of operations completed per second. 

To summarize these two performance metrics for your allocator, we define a performance index 
P to be a weighted sum of the space utilization and throughput: 

P = wU + (1 − w) min{1, T/Tlibc} 

where U is your space utilization, T is your throughput, and Tlibc is the estimated throughput of 
libc’s malloc() on your system on the default traces. 

Running the code 

Your allocator implementations will be tested on traces, which are text files that encode a series 
of calls to malloc() and free(). You can use the provided mdriver program to test and evaluate 
your custom allocator on a given trace. Here is an example of how to compile and run the driver 
program on a particular trace: 

$ make clean mdriver; awsrun ./mdriver -g -v -B -f traces/trace_c0_v0 

You can also run the driver on all traces in the traces directory as follows: 

$ awsrun ./mdriver -g -v -B 

The mdriver program accepts the following command-line arguments: 

• -t <tracedir>: Look for the default trace files in directory <tracedir> instead of the default 
directory (./traces). 

• -f <tracefile>: Use one particular trace file for testing instead of the default set of trace 
files. 

• -h: Print a summary of the command line arguments. 

• -l: Run and measure libc’s malloc() in addition to the custom malloc() implementation. 

• -g: Generate summary info for the autograder. 



3 Handout 10 — Homework 6: Custom Memory Allocators 

• -v: Verbose output. Print a performance breakdown for each trace file in a compact table. 

• -V: More verbose output. Prints additional diagnostic information as each trace file is 
processed. Useful during debugging for determining which trace file is causing you to fail. 

• -B: Use the custom “simple allocator.” 

• -W: Use the custom “wrapped allocator.” 

• -P: Use the custom “packed allocator.” 

• -F: Use the custom “fixed aligned allocator.” 

• -S: Use the custom “smart allocator.” 

2 Code layout 

This homework uses code that resembles the code that you will use for Project 3. Let’s review 
the functions whose implementations you will complete to implement your custom allocators, as 
well as some methods that you will use in those implementations. 

Heap memory allocator interface 

Your storage allocators will implement different versions of init(), malloc(), and free() using 
various allocation strategies. These functions are described below and (among other functions) 
are declared in allocator_interface.h. The specific versions of the functions to implement and 
modify are specified in each question. 

• int init(void); 

Before calling the corresponding malloc() or free(), the application program (i.e., the 
trace-driven driver program that you will use to evaluate your implementation) calls init(). 
You may use this function to perform any necessary initialization, such as allocating the 
initial heap area. The return value should be −1 if there was a problem in performing the 
initialization and 0 if everything went smoothly. The specific versions you will encounter 
in this homework are 

int simple_init(void); 

int wrapped_init(void); 

int packed_init(void); 

int fixed_aligned_init(void); 

int smart_init(void); 

• void *malloc(size_t size); 

This call must return a pointer to a contiguous block of newly allocated memory which is at 
least size bytes long. This entire block must lie within the heap region and must not overlap 



4 Handout 10 — Homework 6: Custom Memory Allocators 

any other currently allocated chunk. The pointers returned by malloc() must always be 
aligned to 8-byte boundaries; you’ll notice that the libc implementation of malloc() does 
the same. If the requested size is zero or an error occurs and the requested block cannot be 
allocated, a NULL pointer must be returned. The specific versions you will encounter in this 
homework are 

void *simple_malloc(size_t size); 

void *wrapped_malloc(size_t size); 

void *packed_malloc(size_t size); 

void *fixed_aligned_malloc(size_t size); 

void *smart_malloc(size_t size); 

• void free(void *ptr); 

This call notifies your storage allocator that a currently allocated block of memory should 
be deallocated. The argument must be a pointer previously returned by malloc() and 
not previously freed. You are not required to detect or handle either of these error cases. 
However, you should handle freeing a NULL pointer – it is defined to have no effect. The 
specific versions you will encounter in this homework are 

void simple_free(void *ptr); 

void wrapped_free(void *ptr); 

void packed_free(void *ptr); 

void fixed_aligned_free(void *ptr); 

void smart_free(void *ptr); 

All of this behavior matches the semantics of the corresponding libc routines. Type man malloc 
at the shell to see additional documentation, if you’re curious. 

The provided memory allocator in simple_allocator.c is very fast. On simple_malloc(), it 
increases the heap size and returns the newly allocated memory, while on simple_free(), it does 
nothing. Compile and run it using mdriver on rec_traces/trace_c0_v0. Unsurprisingly, the 
reference allocator has nearly 0% space utilization (because it doesn’t reuse freed memory) and 
100% throughput. 

Support routines 

The code in memlib.c simulates the memory system for your dynamic memory allocators. You 
can invoke the following functions in memlib.c: 

• void* mem_sbrk(int incr); 

Expands the heap by incr bytes, where incr is a positive non-zero integer and returns a 
generic pointer to the first byte of the newly allocated heap area. The semantics are identical 
to the Unix sbrk() function, except that mem_sbrk() accepts only a positive non-zero integer 
argument. 
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• void* mem_heap_lo(void); 

Returns a generic pointer to the first byte in the heap. 

• void* mem_heap_hi(void); 

Returns a generic pointer to the last byte in the heap. 

• size_t mem_heapsize(void); 

Returns the current size of the heap in bytes. 

• size_t mem_pagesize(void); 

Returns the system page size in bytes (4 KB on Linux systems). 

In addition to these functions, there are several macros defined in allocator_interface.h to 
help you implement your custom allocators. 

3 Fixed-size blocks 

To improve the space utilization, let’s implement the fixed-size allocation strategy from Lecture 
11: Storage Allocation. In this strategy, all blocks are allocated with the same size. The allocator 
uses a free list to track the freed blocks. The free list can be implemented as a singly linked list, 
with the next pointers stored inside the freed blocks. 

For this first part, assume that the fixed block size that we use is 1024 bytes. Add the following 
lines to the top of simple_allocator.c: 

#ifndef BLOCK_SIZE 
#define BLOCK_SIZE 1024 // default value 
#endif 

You should use the variable BLOCK_SIZE in your code rather than hardcoding 1024 as you will 
be modifying BLOCK_SIZE in later parts. Notice that next to each block, the provided memory 
allocator stores the size of the block because it is needed for memory reallocation. Even though 
you are not using any reallocation functionality in this homework (that will be in Project 3!), you 
can choose whether or not you still want to store the size next to each block (which requires 
allocating slightly extra memory). 

Checkoff Item 1: Implement the fixed-size block allocation strategy in simple_allocator.c 
by modifying simple_init(), simple_malloc(), and simple_free() as necessary. Report that 
the space utilization (and score) increases to over 99% when run on 
rec_traces/trace_c0_v0. Hint: Make a struct for the nodes of the free list, and remember 
to initialize the head in simple_init(). Use the -B flag when you run mdriver. 
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4 Autotuning 

Unlike rec_traces/trace_c0_v0, trace rec_traces/trace_c1_v0 only requests memory of a fixed 
size BLOCK_SIZE = 4096. Your allocator should support all allocation sizes less than or equal to 
BLOCK_SIZE. Add the following lines to the top of the simple_malloc() function in simple_allocator.c: 

if (size > BLOCK_SIZE) 
return NULL; 

else // size <= BLOCK_SIZE 
size = BLOCK_SIZE; 

The simple_malloc() function is now able to handle all sizes less than or equal to BLOCK_SIZE, 
and it returns an error (as a NULL pointer) for sizes greater than BLOCK_SIZE. (You may argue 
that this error checking shouldn’t be necessary in simple_malloc(): someone else should check 
that it’s broken if it returns a block of size BLOCK_SIZE when a size greater than BLOCK_SIZE was 
requested. We agree, and that will be your job in Project 3 when you fill in validator.h.) Confirm 
that there is an error when you recompile and run on rec_traces/trace_c1_v0. 

$ make clean mdriver; ./mdriver -g -v -B -f rec_traces/trace_c1_v0 

Next, let’s manually override BLOCK_SIZE and confirm that there is no longer an error. 

$ make clean mdriver PARAMS="-D BLOCK_SIZE=4096" 

$ ./mdriver -g -v -B -f rec_traces/trace_c1_v0 

BLOCK_SIZE is an example of a tunable parameter of the code, but how do we determine 
the best value for BLOCK_SIZE? In this case, we could easily determine the value by manually 
inspecting the traces, but in general, it can be very difficult to tune these parameters by hand, 
particularly when there are multiple different parameters (as you will see in Project 3). This is 
where autotuning is useful. 

OpenTuner is a autotuning tool that, by running an optimization, automatically finds the best 
values for the parameters that you tell it about. You will use OpenTuner next to see if you can 
automatically determine the appropriate values for BLOCK_SIZE on different traces. 
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Checkoff Item 2: Use OpenTuner to find the best value of BLOCK_SIZE for 
rec_traces/trace_c0_v0 and rec_traces/trace_c1_v0. 

1. Add BLOCK_SIZE as a power-of-two parameter in opentuner_params.py, varying it from 
25 to 215. 

2. Run the OpenTuner script (which takes 1–2 minutes): 

$ ./opentuner_run.py --test-limit=300 --no-dups --display-frequency=20 \ 
--trace-file=<trace-file> 

How did OpenTuner know that BLOCK_SIZE should be 1024 and 4096, respectively? Is 
it just really good at reading traces, or is the value of BLOCK_SIZE somehow affecting 
the value of the optimization’s objective function? 

3. Add a target autotune to your Makefile so that you can run OpenTuner by running 

$ make clean autotune TRACE_FILE=<trace_dir>/<tracefile> 

Hint: Your Makefile target needs to run the opentuner_run.py script with the 
necessary flags shown above, as well as the trace file passed in on the command line. 

Checkoff 

Commit your changes to your local repository, then verify your work using verifier.py and 
check your code quality by running clint.py. If these scripts pass, show your work to a TA or 
UTA to complete the checkoff for the recitation. 

5 Cache-friendly allocation 

Aligning objects on a cache-line boundary limits the number of cache lines needed to access an 
object. For randomly accessed objects, ensuring that an access uses the fewest cache lines possible 
is especially important. 

In implementing the allocators in this section, assume that objects never need to be freed with 
wrapped_free(). You can evaluate your allocators empirically on traces/trace_c0_nofree. Any 
existing allocator can be used to ensure that objects start at a cache-line boundary with sufficient 
padding. 

https://clint.py
https://verifier.py
https://opentuner_run.py
https://opentuner_params.py
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Write-up 1: In wrapped_allocator.c, wrap the call to unaligned_malloc() inside of 
wrapped_malloc() to ensure that each object starts at a cache-line boundary. The wrapper 
code cannot assume anything about the state of unaligned_malloc(). The macros in 
allocator_interface.h may prove useful. From analyzing your allocator’s code and 
looking at its utilization when run through mdriver, argue about how much memory is 
wasted for aligned allocations. Use the -W flag when you run mdriver. 

Although each object will need fewer cache lines, inefficient cache utilization can lead to more 
cache loads overall. 

Now consider allocating memory in a more cache-friendly way that allows for a more com-
pact packing. In other words, you can pack multiple objects into a single cache-line. Even though 
some of your objects may no longer be cache-aligned, don’t forget that objects still need to be 
8-byte aligned. The allocator in packed_allocator.c is targeting a single-threaded workload and 
aims to ensure that each object spans a minimal number of cache lines. The provided memory 
allocator stores the size of a block next to that block. Let’s keep this block header and think about 
where we need to store it in relation to the pointer returned to the caller and what we might need 
to store in it. 

Write-up 2: Implement packed_malloc() in packed_allocator.c. Where did you allocate the 
block header? Report the utilization and performance scores. Based on analyzing your code 
and running it through mdriver, how much memory is wasted overall by your aligned 
allocator? Use the -P flag when you run mdriver. 

6 Allocator overheads 

Write-up 3: Do we need to allocate the header in packed_allocator.c if, instead of the 
classic free(p) interface, programmers were in charge of passing the original size as in 
free(p, size)? 
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Write-up 4: Assume that we have only one object size for our next allocator: 64 bytes. Do 
we need to allocate a size header at all? Fill in the fixed_aligned_init(), 
fixed_aligned_malloc(), and fixed_aligned_free() methods in 
fixed_aligned_allocator.c to implement a cache-aligned fixed-size allocator. (In particular, 
make sure you implement a free list this time.) Show the utilization and performance of 
your allocator. Use the -F flag when you run mdriver. 

Now assume that we need to support large (64-byte) and small (32-byte) object sizes. We still 
wish for these objects to be cache-aligned, that is, at least one endpoint of each object must lie 
on a cache-line boundary. Although we could use large allocations for all objects, this internal 
fragmentation can double the memory requirements. Can we support allocation and deallocation 
of two sizes with zero space overhead? 

Let’s implement these ideas in smart_allocator.c. Suppose that you can change the interface 
for your allocator such that any pointer returned by smart_malloc() needs to be accessed through 
the SMART_PTR() macro. 

Write-up 5: Where and how can you store the size of each allocation? Following this 
assumption, the smart_free() implementation in smart_allocator.c uses the SMART_PTR() 
and IS_SMALL() macros to operate on a given pointer. Implement the SMART_PTR() and 
IS_SMALL() macro definitions in allocator_interface.h. 

Write-up 6: Using a single allocator for both different sizes might still suffer from external 
fragmentation. If the small and large objects need to be cache-aligned, then we might need 
to waste space to allocate a 64 byte object on a cache line boundary. What would you do 
with the “wasted space”? Implement alloc_aligned() and smart_malloc() in 
smart_allocator.c, and show your utilization. (Use the -S flag with mdriver.) 

Write-up 7: (No implementation required.) What can you do when you need to allocate a 
32-byte object when you have free-list entries of size 64? What would happen once you have 
run out of space and keep breaking up large objects, but never coalesce small, adjacent 
objects into large ones? What can you do when you have run out of space and need to 
allocate a 64-byte object when you have free list entries of size 32? 
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Write-up 8: (No implementation required.) Allocating space has to be done in contiguous 
regions of memory. Is it possible to coalesce two 32-byte objects into a 64-byte object if the 
32-byte objects are not adjacent in memory? How would you implement this coalescing if 
possible? 
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