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PROFESSOR: So we've been saving for the last the property that makes expectation calculating really easy

and short circuits a lot of the ingenious methods that we've used up until now-- namely,

expectation is linear.

So what that means is that if you have two random variables R and S and two constants a and

b, the expectation function is linear. That is, you take a linear combination of R and S-- aR plus

bS, and that's equal to the corresponding linear combination of the expectations.

I'll read it again. Expectation of aR plus bS is equal to a times the expectation of R plus b times

the expectation S.

Expectation is linear. OK.

That's an absolutely fundamental formula that you should be comfortable with and remember.

It extends actually not only to any finite number of variables, but with some convergence

conditions, it actually extends even to accountable sum of variables. But let's just settle for the

two random variables case for today.

Now, the crucial thing that makes it so powerful and useful is that this fact has nothing to do

with independence. Whether R and S are independent or equal, it doesn't matter. This linearity

holds.

The proof is not terribly informative. It's just manipulating terms and rearranging terms into

sum, but let's go through the exercise. Again, something I would never do in lecture. But in a

video where you can skip it or fast forward or replay it, I think it might be worth doing, And it is

a proof, by the way, that I think you should be responsible for. So let's go through it.

OK. We're interested in the expectation of the random variable that you get by multiplying the

random variable A by little a and the random variable B by little b. All right.

One of the definitions of expectation is that you get this expectation by taking the sum over all

the outcomes of the value of this linear combination at the outcome omega times the

probability of omega. So what's the value of the linear combination aA plus bB? At omega, it's

simply a times A of omega plus b times B of omega.

OK. Now I've got a sum of these terms summing over omega. I can split them into two groups.



I can take the sum over the aA's at omega times probability of omega and bB of omega times

probability of omega.

In other words, I'm multiplying by probability of omega here to get a sum of two terms, and

then I'm rearranging all of the capital A terms first, followed by all the capital B terms.

The result is that I wind up with the sum over omega of the A terms times the probability of

omega-- and I factored out the little a-- plus b times the sum over all omega of B of omega

times the probability of omega. It's just rearranging the terms in this sum after I've multiplied

through by probability of omega.

Well, of course, this is equal by definition to a times the expectation of A. Notice this is the

expectation of A, and that's the expectation of B times b. And the proof is done. Not inspiring,

but routine if you use the alternative definition of expectation in terms of summing over the

outcomes. It's a messier proof if you have to use the definition of the expectation, being the

value times the probability that the variable takes that value. And you wind up having to

convert that formula into this formula in order to carry through the proof nicely. And we're

done.

OK. Let's make use of it. And in order to do that, let's make a really trivial but a very important

remark about the expectation of an indicator variable. So remember I sub A is three random

variables that's equal to 1 if the event A occurs and 0 if the even A doesn't occur.

So what is the expectation of the indicator variable? Well, by definition, it's 1 times the

probability that it equals 1 plus 0 times the probability that it equals 0. Those are the only two

values it can take.

Well, we can forget this term in 0 times something. But what is the probability that I A is equal

to 1? That's exactly the probability of A, and that's the fundamental formula that we want to

notice. The expectation of the indicator variable for the event A is nothing but the probability

that A occurs. File that away. We're about to use it multiple times.

So let's go back to the expected number of heads in n flips which we've now seen at least two

ways to do-- one by generating function argument, another by a recursive argument using

total expectation. Now where we're going to knock it off very elegantly using linearity because

let Hi be the indicator variable for having a head on ith flip.

So we look at the ith flip. Hi is 1 if the ith flip comes up head and Hi is 0 if the ith flip does not



come up head. Then we can make the following crucial remark, and this is a trick that we'll use

regularly by expressing some quantity that we're interested in as a sum of indicator variables.

The total number of heads-- the random variable equal to the total number of heads in n flips--

is equal to the sum of the indicator variables for whether there's a head on the first flip plus

whether there's a head on the second flip up through whether there's a head on the n flip.

So suddenly the random variable that I want to compute is a sum of n random variables, in

fact, n indicator variables. All right.

Well, that tells me that the expectation of the number of heads is the expectation of the sum.

After all, it's equal to the sum. But the expectation of the sum is going to be the sum of the

expectations by linearity.

So it's simply the expectation of H 1 plus the expectation of H 2 out through the expectation of

H n.

But what's the expectation of getting a head on ith flip? Well, the flips are independent. It's

simply the expectation of a head. So what I have is-- each of these is equal to the probability

of a head, and there's n of them. So the total is n times the probability of Head, or np, which is

a formula that we had derived two other ways previously. And now it really falls out very

elegantly with hardly any ingenuity other than the wonderful idea of expressing the number of

heads as a sum of indicators.

Let's look at one example and a very related example of asking about the probability of the

expected number of hats that are returned.

When n men check their hats at a hat check and then the hats get all scrambled up by

incompetent staff and then they're given out again in such a way that the probability that the

ith man gets his own hat back is 1 over n.

What you could say is that all possible permutations of the n hats are equally likely. And we

ask with all permutations equally likely, how many of them is it the case that the ith man gets

his own hat back? And there's a 1 out of n chance that the ith man is going to get his own hat

back because there's n hats, and he's equally likely to get all of them.

OK.



How many men do we expect will get their hat back in this setting?

Well, let's let our Ri be the indicator variable for whether or not the ith man got his hat

returned-- R i for hat returned to the ith man.

Now, notice that Ri and Rj are not independent. In the previous case, those H's were

independent because the coin flips were independent. But here, if I know, for example, that R

1 got his hat back, the probability that R 2 got his hat back has changed from 1 over n to 1

over n minus 1 because 1 is out of the picture, and R 2 is going to get his hat back among the

remaining hats 2 through and n is n minus 1 of them. And he's got a 1 minus 1 over n minus 1

chance of getting his hat.

His probability has changed given that R 1 got his hat back. So they're not independent. All

right.

Nevertheless, independence doesn't matter for linearity. So I can still say that the expected

number of hats returned is equal to the expectation of the sum of the indicator variables for

each man getting his hat back.

And of course, the expectation of that sum is the sum of the expectations. And the expectation

of each of these-- we figured out-- was 1 over n, and there's n of them. So it's n times 1 over

n, or 1.

I expect when all the hats are scrambled and all permutations of the hats are equally likely,

that one man is going to get his hat back. None of the others will.

OK. Now let's change the situation a little bit. And think instead of scrambling the hats in a way

that all possible permutations of hats are equally likely, let's think about a Chinese banquet. So

Chinese banquets are traditionally done with a table of nine in a circle, and there's a lazy

Susan that spins around where there's dishes of food in front of each person.

But let's generalize it to n. Suppose that n people are sitting around a spinning table-- a lazy-

Susan) with n different dishes, one dish in front of each person. And now we spin the lazy

Susan randomly, and we ask how many people do we expect will wind up with the same dish

that they started with after the spin?

Well, now we can let Ri indicate that the ith person got the same dish back. And now these

Ris, which are different from the previous ones about hat returns, these are Ris are totally



dependent-- much more so than the other ones work because they're all 1 or they're all 0.

If one person gets their hat back, it means that the spinning table got back to where it used to

be, and everybody has their hat back. And if one person doesn't have their hat back, then the

table is shifted off where it was originally and nobody has the original dish.

I said hats. I meant the dish that they started with.

So everybody gets the same dish back, or nobody gets the same dish back. These variables

are as dependent as they possibly could be, but it doesn't matter because linearity still holds.

And that means that the previous argument about the expected number of dishes that get

back to the person that they started with is still 1 even though all the Ris are equal.

Well, that's so much for the lovely rule about linearity of expectation which holds regardless of

assumptions about independence or not. There is a rule for products, but it requires

independence.

So the independent product rule says, sure enough that the expectation of a product of two

random variables, x and y, is the product of their expectations, providing that they are

independent. And this extends to many variables if they're mutually independent.

Again, the proof by rearranging terms in the defining sum for the expectation of xy. Let's go

through it. And again, you can fast forward or skip this part if you don't want to watch

equations being manipulated.

So by definition, the expectation of the product xy is the sum over all the possible values of x

and y of the value of the product xy times the probability that the first variable, capital X,

equals little x and the second variable Y is equal to little y. This is by definition, the expectation

of the product-- by the first definition. Not the one in terms of outcomes.

Now, using independence, this term here can be split into a product of X equals x and Y

equals y. So let's do that. So this is the sum of xy times the probability that X equals x times

the probability that Y equals y.

Now I'm going to do a fairly standard trick, which is I'm going to organize this sum in a clean

way. Right now it's an unordered sum over all possible pairs of x and y in the range of the

variables x and y, but I'm going to do the sum so I first sum over all the y's, and then for each



y, I'm going to sum over all the x's.

This is an unordered some really. There's no order here, but now I'm giving you an

arrangement which says that I'm going to lump together the sums over all the x's, and then for

each of those I'm going to sum up over the y's.

Well, when I do it this way, what I've got is an interesting thing here. I've got a sum over x, and

there's some y terms here that don't depend on x. I can factor them out because they don't

change with x.

So if I factor out this y and probability of Y equals y, I wind up with the sum over y of this

factored out term-- y times probability Y equals y-- times the sum over x's x times the

probability that X equals x.

Now, this is the same term that is the coefficient of every one of these y terms that depends on

y, and this term does not depend on y. So I can factor it out. And if I do that, I wind up with the

sum over x of x times the probability that X equals x times the sum over y of y times the

probability that Y equals y.

And guess what. This is by definition the expectation of X, and this is by definition the

expectation of Y. And by that chain of equalities, I've proved, sure enough, that the

expectation of XY is equal to the expectation of X times the expectation of Y QED.

So the key step here was where independence was used at the very first step when I split up

the probability that X equaled x and Y equaled y into the product of the corresponding

probabilities.

Now, let me just end with a warning about a couple of blunders that people make all the time.

So first of all, don't forget independence as a crucial condition on the product rule for

expectations.

It can hold in some cases where the variables are dependent. Independent is not a necessary

condition. It's efficient, but you need some kind of a condition in order for the product rule to

hold. So if you're not careful, it won't if you forget to check for independence or something that

is tantamount to it. So let's just take an easy example remember what happens if

independence fails.

Suppose I have a variable X-- a random variable X-- which takes positive and negative values



with equal probability. So it takes 1 and minus 1 with equal probability. It takes pi and minus pi

with equal probability. I don't really care what those values are as long as it's taking some

positive and negative values, and it takes a positive value at the same probability that it takes

that value negated.

Well, that automatically means that the expectation of X is 0 because when I add up all these

terms, the positive and negative terms cancel because they have the same probability. So any

such X that's symmetric about 0 has expectations 0.

On the other hand, if I square X, then all of those positive and negative values become

positive. And so I'm taking the expectation of a variable that's strictly positive-- at least with

nonzero probability at a bunch of outcomes. And therefore, the expectation of X squared is

positive.

So the expectation of X is 0, but the expectation of X squared is positive. Well, of course, if I

multiply expectation of X times expectation of X, that's still 0.

So here's a counter example. Expectation of X times expectation of X is equal to 0, which is

less than the expectation of the square of X. Of course this is about as dependent as it could

possibly be because it's the same random variable, but it illustrates the failure of the product

rule if you don't have some kind of a condition like independence around.

There's a second blunder that's more interesting and that people can fall in because there's a

temptation to assume that if the product rule holds for independence, then so should the

reciprocal rule. That is, you might think that the expectation of X over Y is equal to the

expectation of X over the expectation of Y when X and Y are independent. But it's not true.

Even when they're independent, the expectation of X divided by Y is in general, not equal to

the expectation of X divided by the expectation of Y. In fact, the counterexample is if X is the

constant 1, the expectation of 1 over Y

[AUDIO OUT]

PROFESSOR: [INAUDIBLE] complex instruction set code was better than risk. So I won't mention names, but

prominent people have made this blunder. You shouldn't.


