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PROFESSOR:

So let's look now at the mathematical foundations of probability theory, the basic definitions of
which we've just been doing examples up until now. So a key concept is a probability space.

And that's what we're going to talk about in this segment.

So the abstract setting of a probability space is the first thing you start off with is the set of
outcomes, which is what we saw we were doing with the tree models in the previous videos.

And the condition that we require is that there should be a countable set of outcomes.

So there's something called the sample space. And the sample space is designed to model all
the possible things that can happen as the result of your random experiment, all the possible

outcomes. And we require that there be a countable number.

Now, the examples that we've seen so far have only had a finite number. But we will shortly
see a bunch of examples where we really need an infinite number. But only a countable infinite

number. That's part of the definition of a probability space-- the set of outcomes.

The next thing is a probability function whose task is to assign probabilities to the outcomes.
So the condition is that the probability function, Pr, gives every element in S, every outcome, is
going to be assigned a probability of between 0 and 1 inclusive. So every outcome gets a

probability between 0 and 1.

But the constraint on the probability function is that if | sum up the probabilities of all the
outcomes-- omega is an outcome in the sample space S-- and | take the sum of all of those
probabilities of omega, they have to sum to 1. That's the crucial condition that defines a
probability function on a sample space. And the two together are what are called a probability

space. A sample space with a probability function is a probability space.

So the purpose of the tree model that we were using is really to figure out which probability
space to use. And the mathematics doesn't really start until you have the probability space. Up
until that, it's the modeling part that's very important mathematically. But you can't say that the
model is right or wrong. It's a model, and its rightness or wrongness is a matter of judgment

and comparison to how it stacks up against reality and things that we care about.

When we're using the tree model, it's the leaves of the tree that correspond to the outcomes.

And the outcome probabilities, which are crucial for having a probability space, we got by



reasoning about the probabilities to assign to each possible branch of the tree as you worked

your way from root to leaf.

So the other key concept that we saw already is the idea of an event. An event, formally, is
nothing but a subset of the sample space. An event is some set of outcomes. Presumably, the

event is an event that you're interested in, like winning.

And the definition of the probability of an event is simply the sum of the probabilities of all the
outcomes in the event. And we were using this already for both Monty Hall and for the poker
hands. But this is the official general definition-- that once we have a probability function that
assigns probabilities to outcomes, then we can use that to define the probability of an event.
This is the definition of the probability of an event-- simply the sum of the outcome

probabilities.

And as an immediate corollary of this definition, what we get is something that's central to
probability theory. It's called the sum rule. And it says that if you have a bunch of events that
are pairwise disjoint-- so there's no outcome in common to A0 or A1 or A1 or A2 and so on--
then the probability of the union of the A's, the probability that one of these events occurs, one

or more of these events occurs, is simply the sum of the individual probabilities.

And that is a rule that we'll be using all the time. It's very convenient for computing things. If
you just break them up into separate cases, then you can handle the separate cases-- each

A0, A1-- separately, and then add up the probabilities.

And in some approaches to probability, more general ones, this is actually taken as an axiom.
It's the axiom that defines a probability space, but where you start with an assignment of
probabilities to events. But in the discrete case, we don't have to worry about that. It's a

corollary of the way we define the probability.

And that, of course, is a crucial rule-- sometimes called the countable sum rule. But we're just
going to call it the sum rule. Expressed in concise notation, it's the probability of the union of
the Ai's, as i ranges over the non-negative integers, is simply the sum of the individual

probabilities of those events.

Now, why it's called discrete probability that we're studying is because we have a countable
sample space. And as we saw, that discrete combinatorics is the combinatorics of countable

and even finite sets, really. The crucial reason why we're sticking to discrete probability is that



allows us to work with sums instead of integrals.

If you start allowing continuous intervals of time and the probability, say, of throwing a dart and
it landing at a given interval on the line and a whole bunch of other situations where it's natural
to want to use continuous probabilities, you're forced into defining a probability in terms of
integrals, because every outcome has probability 0. And the theoretical basis of it is
considerably more complicated. And we don't need it for, in fact, virtually any purposes that
come up in computer science. And so we will, happily, not have to study integral calculus or

measure theory, really, and just get by with sums.

So let's quickly point out some rules that are now corollaries. They're really derived rules of
probability theory that follow as a consequence of the countable sum rule. And the first one is
the difference rule. The probability of A minus B is simply equal to the probability of A minus

the probability of A intersection B.

Now, notice how much this looks like the difference rule for cardinalities-- that the cardinality of
the finite set A minus B is simply the cardinality of A minus the cardinality of A intersection B.
And indeed, the proof of this is just like the proof of cardinality. It follows directly from the sum

rule for probabilities, which corresponds, of course, to the sum rule for cardinalities.

Namely, by the sum rule for probabilities, what we know is that A is equal set, theoretically, to
A intersection B plus A minus b. That is, A breaks up into the points that it has in common with
B and the points that it doesn't have in common with B. Since those are disjoint, you can add
them. So the probability of A is equal to the probability of A intersection B plus probability of A
minus B. And so | just transpose the A minus B to the left hand side. And | get the difference

rule, which is a rule that's worth remembering.

Similarly, we have inclusion-exclusion. If A and B are not disjoint, then the probability of A
union B is equal to the probability of A plus the probability of B minus the probability of the
intersection. And the proof is, in fact, exactly like the corresponding rule for cardinalities of
finite sets. And of course, it generalizes to more sets. This is an example of the inclusion-

exclusion for three sets in terms of probability.

Another useful, it turns out, consequence is that the probability that A or B happens is
guaranteed to be less than or equal to the probability that A happens plus the probability of B
happens. And this follows as a trivial consequence of the inclusion-exclusion rule for two sets,

because the probability of A union B is equal to this plus this minus some probability, namely,



the probability of the intersection.

So you're taking away something non-negative from these two in order to equal that. In

particular, then, this must be less than or equal to that.

And the closely related phenomenon is [? basi-- ?] [AUDIO OUT] The probability that A or B

happens is greater than or equal to the probability that A happens.

And finally, we can generalize that to a countable collection of sets. If | have a bunch of
events-- A0, A1, and so on-- then the probability that at least one of them occurs, the

probability of the union of the Ai's, is less than or equal to the sum of their probabilities.

This is, again, another kind of obvious rule, not hard to prove. We're not going to bother

proving it, because it really is obvious. But we will get some mileage out of it later on.

So to summarize, the key concept here is a probability space. It consists of a countable set of
outcomes, the sample space, and a probability function that assigns values between 0 and 1
to every outcome such that the sum of the probabilities is 1. And when we're using our tree
model and so on, our objective is to construct one of these things. Usually, the hard part will
be verifying that, in fact, the way we've assigned probabilities has the property that the sum of

them is equal to 1.



