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LMMSE estimator:

first step (obtaining unbiasedness)

Linear estimator: }Afg —aX +b, with a and b picked to
minimize E[(Y -Yy)?] over joint density of X and Y

= min E[(Y —aX —b)?]
a,b N——
Z

First min E[(Z -b)?] = b=puz=py-apx

AN

This yields an unbiased estimator: FE|Y;| = FE|Y| = uy



LMMSE estimator;
second step (solve reduced problem

Now min E[(Y —aX —b)’] = E[({Y - pv} — ao{X — ux})’
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Y X
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ie. min E[(Y — aX)?]

a

Oy X oy
- A= —5 = pPpYX ——

(can be shown in different ways, e.g., by vector picture)
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LMMSE estimator as projection

A Y
I?J—a)f(v:Y—f/\g




Putting it all fogether

. Yo—py X —px
or equivalently - =p -
Y

Also, the resulting MMSE is o3 (1 — p°)



Orthogonality relations

Unbiasedness condition can be written as Y - 17@ 11

(or L to any constant)

~ ~

We also know (Y —aX) L X
or equivalently Y — EAQ X

or equivalently Y — )A/g 1 X

Conversely, first + last above yield equations for a, b



Extension to multivariate case

min F|(Y {aO—I—ZL L a; X7
ag,...,ar \—/_/

AN

Yy

First min = ag = py — Z]L:l ajlhx

ao

This ensures unbiasedness of the estimator.
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Now min E[(Y ZL 166ng)2]

at,...,ar,



Applying orthogonality gives the
“normal equations”
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