
	

Lecture	 12:	 Clustering  
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Reading  

§Chapter 	23  
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Machine	 Learning Paradigm  

§Observe 	set 	of 	examples: training 	data 
§Infer 	something 	about 	process 	that 	generated 	that 
data 
§Use 	inference 	to 	make 	predictions 	about 	previously 
unseen 	data: test 	data 
§Supervised: 	given a 	set 	of 	feature/label 	pairs,	find a 
rule 	that 	predicts 	the 	label 	associated 	with a 	previously 
unseen 	input 
§Unsupervised: 	given a 	set 	of 	feature 	vectors 	(without 
labels) 	group 	them 	into 	“natural 	clusters” 

6.0002	 LECTURE 12 3 



	 	

	

	

	

Clustering	 Is	 an Optimization Problem  

§Why 	not 	divide 	variability 	by 	size 	of 	cluster? 
◦ Big 	and 	bad 	worse 	than 	small 	and 	bad 

§Is 	optimization 	problem 	finding a C 	that 	minimizes 
dissimilarity(C)? 
◦ No,	otherwise 	could 	put 	each 	example 	in 	its 	own 
cluster 

§Need a 	constraint,	e.g., 
◦ Minimum 	distance 	between 	clusters 
◦ Number 	of 	clusters 
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Two Popular Methods  

§Hierarchical 	clustering  
§K-means 	clustering 
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Hiearchical Clustering 

1. Start by assigning each item to a cluster,	 so that if 
you have N items,	 you now have N clusters,	 each 
containing just one item. 

2. Find the closest (most similar) pair	 of clusters and 
merge them into a single cluster,	 so that now you have 
one fewer	 cluster. 

3.	Continue 	the 	process 	until 	all 	items 	are 	clustered  
into a single cluster	 of size N.  

What does distance mean?  

6.0002	 LECTURE 12 6 



	
	

	
	

	
	

	

	
	

	

	

	

Linkage Metrics  

§Single-linkage: consider 	the 	distance 	between 	one 
cluster 	and 	another 	cluster 	to 	be 	equal 	to 	the shortest 
distance 	from 	any 	member 	of 	one 	cluster 	to 	any 
member 	of 	the 	other 	cluster 

§Complete-linkage: 	consider 	the 	distance 	between 	one 
cluster 	and 	another 	cluster 	to 	be 	equal 	to 	the greatest 
distance 	from 	any 	member 	of 	one 	cluster 	to 	any 
member 	of 	the 	other 	cluster 
§Average-linkage: consider 	the 	distance 	between 	one 
cluster 	and 	another 	cluster 	to 	be 	equal 	to 	the average 
distance 	from 	any 	member 	of 	one 	cluster 	to 	any 
member 	of 	the 	other 	cluster 
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Example	of	Hierarchical	Clustering
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BOS NY CHI DEN SF SEA
BOS 0 206 963 1949 3095 2979
NY 0 802 1771 2934 2815
CHI 0 966 2142 2013
DEN 0 1235 1307
SF 0 808
SEA 0

{BOS} {NY} {CHI} {DEN} {SF} {SEA}
{BOS,	NY} {CHI} {DEN} {SF} {SEA}
{BOS,	NY,	CHI} {DEN} {SF} {SEA}
{BOS,	NY,	CHI} {DEN} {SF,	SEA}
{BOS,	NY,	CHI,	DEN} {SF,	SEA}

{BOS,	NY,	CHI} {DEN,	SF,	SEA}
or

Single	linkage

Complete	linkage



	 	 	 	 	

	 	 	 	 	

	 	
	 	 	 	 	

	 	 	 	 	 	 	 	

	

Clustering	Algorithms  

§Hierarchical	 clustering	 
◦ Can select number	 of clusters using dendogram 
◦ Deterministic 
◦ Flexible with respect to linkage criteria 
◦ Slow 
◦ Naïve algorithm n3 

◦ n2 algorithms exist for some linkage criteria 

§K-means a 	much 	faster 	greedy 	algorithm 
◦ Most useful when you know how many clusters	 you want  
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K-means Algorithm 

randomly chose k examples as initial centroids  
while true:  

create k clusters by assigning each  
example to closest centroid  

compute k new centroids by averaging  
examples in each cluster  

if centroids don’t change:  
break  

What is complexity of one iteration? 

k*n*d,	 where n is number	 of points and d time required 
to compute the distance between a pair	 of points 
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An 	Example  
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K	= 	4, 	Initial 	Centroids  
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Iteration 1  
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Iteration 2  
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Iteration 3  
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Iteration 4  
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Iteration 5  
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Issues with k-means  

§Choosing 	the “wrong” k 	can 	lead 	to strange results  
◦ Consider	 k = 3 

§Result 	can 	depend 	upon 	initial 	centroids 
◦ Number	 of iterations 
◦ Even final result 
◦ Greedy algorithm can find different local optimas 
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How	 to Choose	 K  

§A 	priori knowledge 	about 	application 	domain 
◦ There are two kinds of people in the world: k = 2 
◦ There are five different types of bacteria: k = 5 

§Search 	for a 	good k 
◦ Try different values of k and evaluate quality of results  
◦ Run hierarchical clustering on subset of data 
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Unlucky 	Initial 	Centroids  
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Converges 	On  
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Mitigating Dependence on Initial Centroids  

Try 	multiple 	sets 	of 	randomly 	chosen 	initial 	centroids  

Select “best” result 

best = kMeans(points)  
for t in range(numTrials):  

C = kMeans(points)  
if dissimilarity(C) < dissimilarity(best):  

best = C  
return best  

6.0002	 LECTURE 12 22 



	 	 	 	
	 	 	

	 	

	
	 	 	 	 	 	

	

	

An 	Example  

§Many 	patients 	with 4 	features 	each  
◦ Heart rate in beats per	 minute 
◦ Number	 of past heart attacks 
◦ Age 
◦ ST elevation (binary) 

§Outcome 	(death) 	based 	on 	features 
◦ Probabilistic,	 not deterministic 
◦ E.g.,	 older	 people with multiple heart attacks at higher	 
risk 

§Cluster,	and 	examine 	purity 	of 	clusters 	relative 	to 
outcomes 
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Data Sample  

HR Att STE Age Outcome  
P000:[ 89. 1. 0. 66.]:1 
P001:[ 59. 0. 0. 72.]:0 
P002:[ 73. 0. 0. 73.]:0 
P003:[ 56. 1. 0. 65.]:0 
P004:[ 75. 1. 1. 68.]:1 
P005:[ 68. 1. 0. 56.]:0 
P006:[ 73. 1. 0. 75.]:1 
P007:[ 72. 0. 0. 65.]:0 
P008:[ 73. 1. 0. 64.]:1 
P009:[ 73. 0. 0. 58.]:0 
P010:[ 100. 0. 0. 75.]:0 
P011:[ 79. 0. 0. 31.]:0 
P012:[ 81. 0. 0. 58.]:0 
P013:[ 89. 1. 0. 50.]:1 
P014:[ 81. 0. 0. 70.]:0 
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Class 	Example  
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Class 	Cluster  
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Class 	Cluster, 	cont.  
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Evaluating a Clustering  
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Patients  

Z-Scaling 
Mean = ? 
Std = ? 
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kmeans  
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Examining Results  
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Result of Running It  

Test k-means 	(k = 	2) 
Cluster of 	size 	118 	with 	fraction 	of 	positives 	= 0.3305 
Cluster of 	size 	132 	with 	fraction 	of 	positives = 	0.3333 

Like 	it? 

Try 	patients 	= getData(True)	 

Test k-means 	(k = 	2) 
Cluster 	of 	size 	224 	with 	fraction 	of 	positives 	= 0.2902 
Cluster of 	size 	26 	with 	fraction 	of 	positives = 	0.6923 

Happy 	with 	sensitivity? 
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How	 Many Positives Are	 There?  

Total 	number 	of 	positive 	patients = 	83 

Test k-means 	(k = 	2) 
Cluster 	of 	size 	224 	with 	fraction 	of 	positives 	= 0.2902 
Cluster of 	size 	26 	with 	fraction 	of 	positives = 	0.6923 
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A	Hypothesis  

§Different 	subgroups 	of 	positive 	patients 	have 	different 
characteristics 
§How 	might 	we 	test 	this? 
§Try 	some 	other 	values 	of k 
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Testing Multiple Values of k 
Test k-means (k =	 2) 
Cluster of 	size 	224 	with 	fraction of 	positives	= 	0.2902 
Cluster of 	size 	26 	with 	fraction of 	positives	= 	0.6923 

Test k-means (k =	 4) 
Cluster of 	size 	26 	with 	fraction of 	positives	= 	0.6923 
Cluster of 	size 	86 	with 	fraction of 	positives	= 	0.0814 
Cluster of 	size 	76 	with 	fraction of 	positives	= 	0.7105 
Cluster of 	size 	62 	with 	fraction of 	positives	= 	0.0645 

Test k-means (k =	 6) 
Cluster of 	size 	49 	with 	fraction of 	positives	= 	0.0204 
Cluster of 	size 	26 	with 	fraction of 	positives	= 	0.6923 
Cluster of 	size 	45 	with 	fraction of 	positives	= 	0.0889 
Cluster of 	size 	54 	with 	fraction of 	positives	= 	0.0926 
Cluster of 	size 	36 	with 	fraction of 	positives	= 	0.7778 
Cluster of 	size 	40 	with 	fraction of 	positives	= 	0.675 

Pick a k  
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