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14.382 L8. LINEAR PANEL DATA MODELS UNDER STRICT AND WEAK 
EXOGENEITY 

VICTOR CHERNOZHUKOV AND IV ´ ANDEZ-VAL AN FERN ´

Abstract. We discuss basic examples of linear panel data models and their estimation via 
the “fixed effects”, differencing, and correlated random effects approaches. 

1. A Structural Linear Panel Model 

1.1.	 The Setting. Here we consider the linear structural equations model (SEM) 
Yit itα + W f

itγ + Eit, (1.1)= ai + Df
itβ + Eit =: ai + X f Eit ⊥ (Xit, ai), 

where i = 1, ..., n and t = 1, ..., T . 

Here Yit is the outcome for an observational unit i at “time” t, Dit is a vector of variables 
of interest or treatments, whose predictive effect α we would like to estimate, Wit is a vector 
of covariates or controls including a constant, Xit simply stacks together Dit and Wit, and 
Eit is an error term normalized to have zero mean for each unit. 

We shall assume that the vectors 

Zi := {(Yit, X f
it)

f}Tt=1, 

that collect all the variables for the observational unit i, are i.i.d. across i. We note that this 
assumption does allow for arbitrary dependence of data for unit i across t, subject to other 
conditions specified below. In our analysis the temporal dimension T will be small and the 
cross-sectional dimension n will be large. Accordingly, we shall derive formal asymptotic 
results under the “large n, fixed T ” asymptotics, were n → ∞ and T is fixed. This type of 
scenario is often called the “short panel”. 

The orthogonality condition stated will be strengthened below to various assumptions, 
which permit application of common estimation methods for performing inference on the 
target parameter α. 

The random variable ai is the unobserved individual effect. It can be correlated to 
Xit, and so we can not omit it without introducing omitted variable bias that leads to 
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inconsistent estimates of the parameter of interest α. We can give context to this point 
by thinking of the case where ai is the unobserved individual’s innate ability, Yit is 
wage, Dit is education, and Wit are other characteristics of a person i at time t. Clearly 
omission of ai from the model would lead to an omitted variable bias and inconsistent 
estimation of the target parameter α for the usual reasons that we discussed in L2. 
Figure 1 illustrates the omitted variable bias problem in the linear panel model. 

An important point to make here is the following.  

Suppose Dit is randomly assigned conditional on ai and Wit, then α estimates a 
causal parameter – the average treatment effect. This is merely one of many suffi­
cient conditions for causal interpretability of α. An example of another condition is 
the assumption of parallel trends underlying the difference-in-difference approach, as 
described below. 

The individual effect ai is not observed and can not be identified or consistently es­
timated from short panels. This fact is sometimes referred to as the incidental parameter 
problem, a term that was coined by Neyman and Scott [4]. However, the fact that we have 
panel data allows for the remarkable possibility to accommodate unobserved individual 
effects ai in the analysis explicitly. In fact, below we design identification and estimation 
strategies for the target parameter α that bypass the identification and consistent estimation 
of ai. 

Before we continue, it is worth pointing out that Wit could contain a T -dimensional 
vector of indicators for time periods as a subvector, namely the vector 

Qt = (0, 0, ..., 1, ..., 0)f 

with 1 in the t-th position. In this case the model is said to include time effects. 

1.2. The Difference-in-Difference Method. A very important special case of the problem 
that we consider is the “difference-in-difference” approach to identification. Here 

Yit = ai + αDit + Wit
f β + Eit, (1.2) 

where 

• Dit is the indicator of unit i receiving the treatment at time t; 
• Wit are various other controls, for example, time dummies in the simplest case; 
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Figure 1. The figure illustrated the inconsistency of the pooled least square 
estimator, which omits the individual effects. The figure plots the data from 
the linear panel data model in which ai is related to Xit. The pooled estima­
tor, which treats ai as part of the error, estimates the projection of Yit on Xit, 
but this is different then estimating target structural function – which char­
acterizes the projection of Yit on ai and Xit. As a result the pooled least 
squares is inconsistent for the target function, as illustrated in the figure. 
The figure also demonstrates the within or ”fixed effect” estimator, which 
does consistently estimate the target function. 

and α has the interpretation of the treatment effect. Suppose there are two groups: the 
treated and control. The units in the treated group receive the treatment at time t0, and 
the units in the control group do not receive the treatment at any time. Then, for the units 
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in the treated group 
fE[Yis | Treated] = E[ai + Wisβ + Eis | Treated], s < t0, 

E[Yit | Treated] = α + E[ai + Wit
f β + Eit | Treated], t ≥ t0. 

It is tempting to take the difference: 

E[Yit | Treated] − E[Yis | Treated] = α + E[(Wit − Wis)
fβ + Eit − Eis | Treated], 
Change(s,t) 

in an effort to identify the treatment effect α, but the trend term Change(s, t) does not 
necessarily vanish. 

For the units in the control group: 
fE[Yis | Control] = E[ai + Wisβ + Eis | Control], s < t0, 

E[Yit | Control] = E[ai + Wit
f β + Eit | Control], t ≥ t0. 

If we take the difference, 
fE[Yit | Control] − E[Yis | Control] = E[(Wit − Wis) β + Eit − Eis | Control] . 
Change'(s,t) 

Under the assumption of the parallel trends: 

Change(s, t) = Changef(s, t), 

which says that treatment and control groups experienced parallel trends apart from the 
treatment effect, we can take difference-of-the-difference to identify the treatment effect: 

E[Yit − Yis | Treated] − E[Yit − Yis | Control] = α. 

Thus under the assumption of parallel trends, we can identify the treatment effect α. 

The structural linear panel data formulation allows us to incorporate the difference-in­
difference approach as a special case. Under the assumption of parallel trends and other 
conditions specified below, we shall be able to identify and estimate α. Note that the as­
sumption of parallel trends is more plausible when the treatment Dit is randomly assigned, 
but it also allows for non-random assignment even conditional on covariates.1 For exam­
ple, if Yit is income and Dit is participation in a training program, it may be that Dit = 1 
is assigned to those who had low income Yst in the pre-treatment period s < t0. In this 
case, we are still able to identify α under the assumption of the parallel trends for high 
and low-income groups in the absence of treatment. The plausibility of the assumption 
really depends on the context. It could be tested by seeing if group-specific trends enter 
the panel regression model as statistically insignificant. 

1Of course, this is not the first time this happens in this course. Recall Wright’s instrumental variables 
model. 
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2. Basic Identification and Estimation Strategies Under Strict Exogeneity 

There are four methods for identification and estimation that we shall explore, which 
vary in terms of strength of assumptions needed for identification of α: 

1. within-estimation or fixed effect estimation, 
2. first-differencing, 
3. correlated random effects, 
4. pooled estimation or random effects. 

The names listed above are conventional names given to the procedures, though some 
names are potentially misleading, as is usually the case. 

2.1. Key approach I: within-groups or fixed effects approach. This approach eliminates 
the individual effects ai by individual demeaning. Define the operator D acting on doubly 
indexed random variables Vit as: 

TT1 
DVit = Vit − Vit. 

T 
t=1 

Apply this operator to the linear SEM (1.1) to obtain: 

DYit = (DXit)
fγ +DEit. 

This has eliminated the individual effects. It is now very tempting to identify the param­
eter γ as a projection coefficient and estimate it by least squares, but our assumptions are 
not sufficient for this purpose. In order to proceed in this way we need to have the orthog­
onality condition: 

T
1 T

E[DXitDEit] = 0. (2.1)
T 

t=1 

This condition states that the demeaned error terms are uncorrelated with the demeaned 
covariates, after averaging over t. With this assumption γ is equal to the projection co­
efficient of DYit on DXit, where we aggregate across t = 1, . . . , T . The condition (2.1) is 
implied by the so-called strict exogeneity condition: 

TEit ⊥ (X , a i), Xi := (Xis) (2.2)i s=1, 

which states that the structural errors Eit are orthogonal to all lags and leads of Xit con­
ditional on ai. This is potentially a restrictive condition, and does not hold with lagged 
dependent variables appearing as Xit. Note that it is hard to think of situations where 
(2.2) does not hold but (2.1) does for the causal parameter γ, so effectively we are impos­
ing (2.2) when interpreting results as having causal meaning. 
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The least squares estimation using the demeaned equation is called within-groups or 
fixed effects estimator. It can be seen as an exactly identified GMM estimator with the score 
function 

TT
g(Zi, γ) = 

1 
(DYit − DXit

f γ)DXit. (2.3)
T 

t=1 

Because of the exact identification a simplified variance formula applies. It turns out that 
this approach is numerically equivalent to the the so-called least squares dummy variable 
(LSDV) estimator that applies OLS to the model: 

= Qf 
iπ + DfYit itα + Wit

f β + uit, 

where Qi is a n-dimensional vector of indicators for observational units with a 1 in the i-th 
position and 0’s otherwise, namely Qi = (0, 0, . . . , 1, . . . , 0). The elements of this vector are 
called fixed effects. 

Note that here the GMM formulation takes care of the clustering problem – temporal 
dependence of data on observational unit i across time – by aggregating the data on 
unit i into one score. We can also use the panel bootstrap – which would be to simply 
bootstrap the independent observational units i or the scores in (2.3). 

The strict exogeneity condition (2.2) contains “over identifying” restrictions, and we can 
set up a GMM estimator with the score function: 

g̃(Zi, γ) = {(DYit − DXit
f γ)Xi}Tt=1, Xi = (Xit)

T
t=1. (2.4) 

Using this formulation we can obtain an efficient estimator for the causal parameter γ. 
Moreover, we can use the J-test to check the statistical validity of (2.2). Typically the ap­
proach outlined in this paragraph is ignored in empirical work, but this is not a good 
practice. Note that here too we are taking care of the clustering problem by aggregating 
the data on unit i into one score. 

We can construct an alternative GMM estimator based on a subset of linear combina­
tions of the moment conditions implied by strict exogeneity using the score function: 

ğ(Zi, γ) = {(DYit − DXit
f γ)DXit}T (2.5)t=1. 

This estimator might have better finite sample properties than the estimator based on (2.4) 
as it is based on a smaller number of informative moment conditions, T × dim Xit instead 
of T 2 × dim Xit. The J-test in this case can be interpreted as a test of time homogeneity of 
the parameter γ in the FE approach. 

2.2. Key approach II: first differencing. This approach eliminates the individual effects 
ai by taking differences across time. Specifically, define the differencing operator Δ acting 
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on doubly indexed random variables Vit by creating the difference ΔVit = Vit − Vit−1. 
Apply this operator to both sides of (1.1) to obtain: 

ΔYit = ΔXit
f γ +ΔEit, (2.6) 

since Δai = 0. Thus differencing eliminates the individual effect. It is tempting to apply 
least squares to this equation to estimate γ, but the assumptions made so far do not guarantee 
that 

TT1 
EΔEitΔXit = 0, (2.7) 

T − 1 
t=2 

which is necessary for γ to be a projection coefficient. So the researchers impose this con­
dition implicitly when performing the first different estimation. This condition states that 
the innovation in the error terms is uncorrelated with the innovation in the covariates, af­
ter averaging over t. With this assumption γ is equal to the projection coefficient of ΔYit on 
ΔXit, where we aggregate across t = 2, . . . , T . The assumption (2.7) is implied the strict 
exogeneity assumption (2.2) and it is hard to think of situations where strict exogeneity 
does not hold but (2.7) does for the causal parameter γ. 

The assumption can serve as a basis of completely standard least squares estimation 
method with the i.i.d. data {Zi}n . We can formulate that as an exactly identified GMM 

it 

i=1
problem with the score function: 

g(Zi, γ) = 
1 TT 

(Δyit − ΔX f γ)ΔXit, (2.8)
T − 1 

t=2 

so that GMM theory applies here, since {Zi}n are i.i.d. i=1 

Note that the GMM formulation automatically takes care of the clustering problem – 
namely the fact that data for unit i could be dependent across t– by simply aggregating 
the scores within the cluster i. Note that we also can apply bootstrap for inference by 
simply bootstrapping observation units, or, equivalently bootstrapping the scores in 
(2.8). 

Note however that the strict exogeneity (2.2) contains a lot of over-identifying informa­
tion and could serve as a basis for a GMM method with the score function 

g̃(Zi, γ) = {(Δyit − ΔXit
f γ)Xi}Tt=2. (2.9) 

This estimator will be more efficient than the previous one, and we can also use the J-
statistic to test the validity of (2.7) (as well as validity of (2.2)). Ordinarily J-testing is not 
done in empirical work (which is bad practice), and one wonders if the results of many 
well-known studies will pass such a test. Again, the GMM theory applies here. Note that 
this formulation also automatically takes care of the clustering problem. 
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As in the FE approach, we can construct an alternative GMM estimator based on a subset 
of linear combinations of the moment conditions implied by strict exogeneity using the 
score function: 

ğ(Zi, γ) = {(ΔYit − ΔXit
f γ)ΔXit}tT 

=2. (2.10) 
This estimator might have better finite sample properties than the estimator based on (2.9) 
as it is based on a smaller number of informative moment conditions, (T − 1) × dim Xit 
instead of (T − 1)T × dim Xit. The J-test in this case can be interpreted as a test of time 
homogeneity of all the model parameters in the FD approach. 

2.3. Other Approaches: Correlated Random Effects. In this approach, instead of trying 
to eliminate the individual effect ai, we model its dependence on the covariates: 

TT1¯ ai = X̄ 
i
fλ + vi, vi ⊥ Xi, X̄ 

i = Xit. 
T 

t=1 

Then 
= X̄ 

i
fλ + X fYit itγ + uit, uit = vi + Eit. 

Under the strict exogeneity assumption (2.2), the parameters γ and λ can be identified as 
projection coefficients, and we can estimate the model by least squares. This corresponds 
to the GMM approach with the score function: 

TT
g(Zi, λ, γ) = 

1 
(Yit − X̄i

fλ − Xit
f γ)X̃it, X̃it = (X̄ 

i, Xit). 
T 

t=1 

It turns out that this approach is numerically equivalent to the within-groups estimator in 
the linear model. Still it is conceptually useful to have this approach discussed here. 

As in the previous cases, there is a lot of over-identifying information and we can use 
the score function: 

¯ g̃(Zi, λ, γ) = {(Yit − Xi
fλ − Xit

f γ)Xi}Tt=1 

to set up the efficient GMM estimator and use the J-test to examine the validity of the 
model. 

2.4. Other Approaches: Pooled or Random Effects Approach. This approach is by far 
the most restrictive. You still need to know about it, since people use this terminology 
quite often and you need to understand what they mean by it. In this approach we simply 
think that ai is uncorrelated with Xit and treat it as a part of the error term: 

= X fYit itγ + vit, vit ⊥ Xit, vit = ai + Eit. 

This means we can identify α as a projection coefficient and estimate it by least squares of 
Yit on Xit. The error terms vit are correlated across t, which is a form of “clustering”. We 
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can easily take care of this dependence by using the score function: 

TT
g(Zi, γ) = 

1 
(Yit − Xit

f γ)Xit. (2.11)
T 

t=1 

2.5. Which approach to use? The pooled estimator is the worst in terms of strength of 
assumptions. The minimal assumption (2.1) of the fixed effects approach and is neither 
stronger nor weaker than the minimal assumption (2.7) of the first differencing approach. 
It is always a good idea to test the underlying assumptions. 

None of the assumptions made are suitable to the case where the strict exogeneity 
does not hold. Strict exogeneity requires the leads and lags of Xit to be uncorrelated 
with Eit. This assumption is violated for example when Xit contains lagged dependent 
variables. The first difference approach makes the slightly milder assumption of un­
correlated differences, but it is still unsuitable, for example, when lags of Yit appear as 
Xit. 

Example 1 (Lagged Dependent Variable). The last point requires elaboration. If the model 
is 

Yit = ai + β Yi(t−1) +Eit, 
Xit 

where Eit has zero mean conditional on ai and is independent across t. Then, strict exo­
geneity clearly fails because Eit is not orthogonal to Xi(t+1) = Yit conditional on ai: 

2E[YitEit | ai] = E[Eit | ai] = 0 . 

Also the uncorrelated differences assumption fails because ΔEit is not orthogonal to ΔXit: 

EΔXitΔEit = E(Yi(t−1) − Yi(t−2))(Eit − Ei(t−1)) = −EE2  = 0.i(t−1) 

3. Getting More Sophisticated: Identification and Estimation under Weak Exogeneity 

Once you understand how things work for the key approaches and how they easily fit 
in the GMM framework, you can easily modify them to best suit your empirical situations. 
Here is one example of how to do this, and it comes as a pleasant bonus for mastering 
the preceding section as well as the GMM material. In this example, we will focus on 
the differencing approach, but we could also consider de-meaning where one uses future 
values of the dependent variable to de-mean it and uses the past values of the regressors 
to demean them. 
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3.1. A Model with Pre-Determined Regressors. Consider the linear SEM (1.1) with pre­
determined regressors, namely 

Eit ⊥ (Xi
t , ai), Xt := (Xit, Xi(t−1), . . . , Xi1).i 

This is a weak exogeneity assumption. Note that this formulation can accommodate lagged 
dependent variables as part of Xit if Eit is not serially correlated. 

We can adapt the first differences approach to this situation. Note that 

ΔEit ⊥ Xt−1 .i 

This means we can identify γ from the moment equations: 

E(ΔYit − ΔXit
f γ)Xi

t−1 = 0, t = 2, . . . , T. (3.1) 
The estimation and inference can be done using GMM with the score function 

g(Zi, γ) = {(ΔYit − ΔXit
f γ)Xi

t−1}Tt=2. (3.2) 
This estimation method subsumes as a special case the Arellano-Bond [3]’s estimation ap­
proach for models with a lagged dependent variable. 

As in the strictly exogenous case, we can construct an alternative GMM estimator based 
on a subset of linear combinations of the moment conditions implied by weak exogeneity 
using the score function: 

ğ(Zi, γ) = {(ΔYit − ΔXit
f γ)Xi(t−1)}Tt=2. (3.3) 

This estimator might have better finite sample properties than the estimator based on (3.2) 
as it is based on a smaller number of informative moment conditions. The J-test in this 
case can be interpreted as a test of time homogeneity of all the model parameters. We can 
further reduce the number conditions by averaging over t resulting on the score function 

TT1 
g̃(Zi, γ) = (ΔYit − ΔXit

f γ)Xi(t−1),T − 1 
t=2 

which just-identities the parameter γ. This method subsumes as a special case the Anderson-
Hsiao [2] estimator for models with a lagged dependent variable. 

3.2. A Model with Pre-Determined Instruments. As a further generalization we consider 
the linear structural equations model (SEM) 

Yit = ai + Dit
f α + Wit

f β + Eit =: ai + Xit
f γ + Eit, 

where i = 1, ..., n and t = 1, ..., T , and where we have pre-determined instruments: 

Eit ⊥ (Mi
t , ai), M t := (Mit,Mi(t−1), ...). (3.4)i 

where Mit are technical instruments that contain Wit, but don’t contain Dit. For example, 
we can think about modeling aggregate demand equations across different markets i and 
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across different time periods, where Dit is the price. The instruments Mit could consist of 
various supply shifters as well as controls Wit. 

Then (3.4) implies 
ΔEit ⊥ M t−1 . (3.5)i 

This means we can identify γ from the moment equations: 

E(ΔYit − ΔXit
f γ)Mi

t−1 = 0. (3.6) 
The estimation and inference can be done using GMM with the score function 

g(Zi, γ) = {(ΔYit − ΔXit
f γ)Mi

t−1}Tt=2. (3.7) 

As before the GMM formulation takes care of clustering by simply defining the scores 
appropriately. 

4. The Effects of Expending on Academic Performance 

We illustrate the methods of Section 2 with an empirical application on the effect of 
school resources per student on test pass rates following Papke (2005) [5]. We use data 
from annual Michigan School Reports (MSR) on 550 elementary schools in Michigan for 
the period from 1992 through 1998. This period covers 1994, when Michigan carried out 
a school finance reform to equalize spending across K-12 schools. The purpose of this re­
form is to offer equal educational opportunities and to improve student performance. The 
outcome variable Yit is the percent of students passing a fourth-grade math test from the 
Michigan Educational Assessment Program in school i at year t. The explanatory variables 
Xit include the logarithm of per student spending, logarithm of per student spending in 
the previous year, the fraction of the students receiving free lunch, and the logarithm of 
school enrollment. Table 1 gives descriptive statistics for the variables used in the analysis. 

Table 1. Descriptive Statistics 

Mean SD 
Math Pass Rate 55.43 18.20 
Expenditure 5,496 1,151 
Lunch 27.20 15.41 
Enrollment 3,044 8,153 

We estimate the model (1.1) using several approaches: 

(1) Pooled: pooled approach that assumes that Xit is orthogonal to the school unob­
served effect ai. 

(2) FD: first differencing approach based on the moment conditions (2.7). 
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(3) GMM-FD1: first differencing approach based on two-step GMM with the score 
function (2.10). The first-step uses the FD estimator to construct the optimal weight­
ing matrix. 

(4) GMM-FD2: first differencing approach based on two-step GMM with the score 
function (2.9), which exploits all the restrictions implied by strict exogeneity. The 
first-step uses the FD estimator to construct the optimal weighting matrix. 

(5) FE: fixed effects approach based on the moment conditions (2.1). 
(6) GMM-FE1: fixed effects approach based on two-step GMM with score function 

(2.5). The first-step uses the FE estimator to construct the optimal weighting matrix. 
(7) GMM-FE2: fixed effects approach based on two-step GMM with score function 

(2.4), which exploits all the restrictions implied by strict exogeneity. The first-step 
uses the FE estimator to construct the optimal weighting matrix. 

For each approach we compute estimates, analytical standard errors clustered at the school 
level, and bootstrap standard errors based on resampling schools with replacement. We 
also report the results of the J-test for the overidentifying restrictions of the GMM-FD1, 
GMM-FD2, GMM-FE1 and GMM-FE2 approaches. 

Table 2 presents the results. All the approaches yield positive and significant effects 
of increasing expenditure per student the previous year on current math score passing 
rates. The delay on the effect is due to the timing of the tests and spending variables: the 
test are administered early in the second semester, whereas the spending is the allocation 
for the entire school year. According to the analytical standard errors, using all the strict 
exogeneity restrictions substantially increases the precision of the estimates. However, 
we should be cautious with this result as analytical standard errors might provide a poor 
approximation to the variability of two-step GMM estimators in the presence of many 
(potentially weak) moment conditions.2 Bootstrap provides standard errors that are more 
stable across the different approaches. Time homogeneity of all the model parameters 
cannot be rejected at the 5% level, although only marginally for the GMM-FD1. The strict 
exogeneity overidentifying restrictions are rejected at the 5% level with both GMM-FD2 
and GMM-FE2. 

5. Causal Effect of Democracy on Economic Growth 

We illustrate the methods of Section 3 with an application to the causal effect of democ­
racy on economic growth based on Acemoglu, Naidu, Restrepo and Robinson (2014) [1]. 
We use a balanced panel of 147 countries over the period from 1987 through 2009 extracted 
from the data set used in [1]. The outcome variable Yit is the logarithm of GDP per capita in 
2000 USD as measured by the World Bank for country i at year t. The treatment variable 
of interest Dit is a democracy indicator constructed in [1], which combines information 

2[6] derived a correction for analytical standard errors of two-step GMM estimators. 
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Table 2. Effect of Expenditure per Student on Math Scores  

Pooled FD GMM-FD1 GMM-FD2 FE GMM-FE1 GMM-FE2 
log(rexpp) 0.53 

(2.51) 
[2.49] 

-1.41 
(4.93) 
[4.65] 

-1.73 
(2.99) 
[3.43] 

0.65 
(1.30) 
[3.39] 

-0.41 
(2.79) 
[2.74] 

-0.28 
(2.09) 
[2.51] 

1.07 
(1.31) 
[2.61] 

L1.log(rexpp) 9.05 
(2.79) 
[2.81] 

11.04 
(5.12) 
[5.10] 

7.94 
(2.77) 
[3.69] 

9.87 
(1.12) 
[4.26] 

7.00 
(4.24) 
[4.20] 

9.44 
(2.47) 
[3.42] 

7.63 
(1.03) 
[3.87] 

log(enrol) 0.59 
(0.41) 
[0.40] 

2.14 
(1.64) 
[1.59] 

1.84 
(1.02) 
[1.34] 

1.42 
(0.42) 
[1.32] 

0.25 
(0.95) 
[0.95] 

0.31 
(0.75) 
[0.96] 

0.05 
(0.41) 
[0.93] 

lunch -0.41 0.07 0.02 0.02 0.06 0.01 0.01 
(0.03) 
[0.03] 

(0.17) 
[0.15] 

(0.12) 
[0.16] 

(0.04) 
[0.12] 

(0.13) 
[0.12] 

(0.10) 
[0.11] 

(0.04) 
[0.11] 

J-test 25.37 157.94 19.13 157.43 
p-val 
d.o.f. 

0.06 
16 

0.00 
101 

0.51 
24 

0.02 
122 

Note 1: All the specifications include time effects.  
Note 2: Clustered standard errors at the school level in parentheses.  
Note 3: Bootstrap standard errors in brackets based on 500 replication.  

from several sources including Freedom House and Polity IV. This indicator captures a 
bundle of institutions that characterize electoral democracies such as free and competitive 
elections, checks on executive power, an inclusive political process that permits various 
groups of society to be represented politically, and expansion of civil rights. Table 3 re­
ports some descriptive statistics of the variables used in the analysis. The unconditional 
effect of democracy on GDP is 134% in this period. 

Table 3. Descriptive Statistics 

Mean SD Dem = 1 Dem = 0 
Democracy 0.62 0.49 1.00 0.00 
Log(GDP) 7.58 1.61 8.09 6.75 
Number Obs. 3,381 3,381 2,099 1,282 
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We control for unobserved country effects and rich dynamics of GDP using the linear 
panel model 

pT
Yit = ai + αDit + βj Yi(t−j) + Eit, i = 1, . . . , n, t = p + 1, . . . , T, 

j=1 

where we assume that 

Eit ⊥ (Xi
t , ai), Xi

t = (Dit, . . . , Di1, Yi(t−1), . . . , Yi1). (5.1) 

This assumption implies that democracy and past GDP are orthogonal to contemporane­
ous and future GDP shocks, and that the error Eit is serially uncorrelated once we include 
sufficiently many lags of GDP.3 Following the preferred specification in [1], we include four 
lags (p = 4). 

Table 4. Effect of Democracy on Economic Growth 

Predictive Causal 
Pooled FD FE GMM-FD1 GMM-FD2 

Democracy 
(×100) 

0.46 
(0.26) 
[0.26] 

0.94 
(1.20) 
[1.20] 

1.89 
(0.65) 
[0.66] 

4.45 
(2.77) 
[2.75] 

3.91 
(1.70) 
[1.61] 

L1.log(gdp) 1.33 
(0.05) 
[0.05] 

0.33 
(0.05) 
[0.06] 

1.15 
(0.05) 
[0.05] 

1.30 
(0.14) 
[0.15] 

1.00 
(0.07) 
[0.07] 

L2.log(gdp) -0.18 
(0.06) 
[0.07] 

0.17 
(0.04) 
[0.04] 

-0.12 
(0.06) 
[0.06] 

-0.15 
(0.28) 
[0.22] 

-0.08 
(0.06) 
[0.07] 

L3.log(gdp) -0.11 
(0.05) 
[0.05] 

0.06 
(0.02) 
[0.02] 

-0.07 
(0.04) 
[0.04] 

-0.43 
(0.28) 
[0.23] 

-0.04 
(0.04) 
[0.04] 

L4.log(gdp) -0.05 
(0.03) 
[0.03] 

-0.05 
(0.04) 
[0.04] 

-0.08 
(0.02) 
[0.03] 

0.18 
(0.14) 
[0.13] 

-0.08 
(0.03) 
[0.03] 

J-test 70.71 130.23 
p-value 
d.o.f. 

0.00 
31 

1.00 
463 

Note 1: All the specifications include time effects.  
Note 2: Clustered standard errors at the country level in parentheses.  
Note 3: Bootstrap standard errors in brackets based on 500 replications.  

3All the variables are net of time effects. 
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Table 4 presents the results. The estimates based on the weak exogeneity condition (5.1) 
are reported in the columns labelled as GMM-FD1 and GMM-FD2.4 GMM-FD1 applies 
two-step GMM with the score function (3.3) with 

Xit = (Dit, Yi(t−1), . . . , Yi(t−4)), γ = (α, β1, . . . , β4), (5.2) 
which uses only a subset of the moment conditions in (5.1). GMM-FD2 applies two-step 
GMM with the score function (3.2), which uses all the moment conditions in (5.1), with 
the same Xit and γ as in (5.2) . In both cases we test the overidentifying restrictions us­
ing the J-test. The rest of the columns report estimates of predictive effects based on the 
pooled, first differencing and fixed effects approaches of Section 2 with the score functions 
(2.11), (2.8) and (2.3), respectively. None of these approaches is consistent for the causal 
parameters identified by (5.1) under large n fixed T asymptotics.5 For each method, we re­
port analytical standard errors clustered at the country level and bootstrap standard errors 
based on resampling countries without replacement. The GMM-FD2 approach finds that 
a transition to democracy increases economic growth by almost 4% in the first year, and 
about 20% in the long run.6 The J-test does not reject the weak exogeneity overidentifying 
restrictions in (5.1). The GMM-FD1 approach yields short run effects similar to FD-GMM2, 
but more than double run effects of 46.7% and clearly reject the overidentifying restrictions 
in (3.3). This does raise the concern about the statistical validity of the model and warrants 
further investigation. The discrepancy in the conclusion of the J-test might be due to lack 
of power in the GMM-FD2 due to simultaneous testing of many restrictions, most of them 
(possibly) weak moment conditions. As expected, the FE predictive estimates are closer 
to their causal counterparts than the pooled and FD estimates because T is large, T = 19 
after using the first 4 periods as initial conditions. 

Appendix A. Problems 

(1) Implement standard panel data estimators (fixed effects, first differences, or Arellano-
Bond approach) for the first or second empirical example. These are implemented 
in standard software such as Stata or R. Very briefly explain the assumptions you 
need to make for these estimators to be consistent for causal effects, and why these 
assumptions may or may not hold in these examples. Very briefly explain how you 
are taking care of clustering. 

(2) (Optional Bonus Problem.) Implement the GMM-FE1 and GMM-FE2 estimators 
for the first empirical example and GMM-FD1 for the second empirical example. 
Report results of J-tests. Explain very briefly what you are doing. Extra ”plus” for 

4We obtain the estimates with the command pgmm of the package plm in R. 
5The fixed effects estimator is consistent under asymptotic sequences where n, T → ∞ because it has 

asymptotic bias of order O(T −1).  6The long-run effect is calculated as α/(1− p
j=1 βj ), and corresponds to the effect of a permanent transition 

to democracy. 
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finding problems with the posted R-code or the empirical results reported in the 
lecture note. 
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