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14.382 L4. EULER EQUATIONS, NONLINEAR GMM, AND OTHER 
ADVENTURES 

VICTOR CHERNOZHUKOV AND IV AN´  FERNANDEZ- ´ VAL 

Abstract. Here we analyze the Hansen-Singleton model of an optimizing agent and from 
the Euler equations derive a nonlinear moment condition model that we then use to estimate 
agent’s preference parameters. This thrilling exercise leads us to consider the nonlinear 
GMM. We provide sufficient conditions for consistency and asymptotic normality of GMM 
and provide the specification test for validity of the moment conditions (J-test). We also 
consider the “continuously updated” version of GMM, and outline the Anderson-Rubin 
approach to inference under weak or partial identification. As a bonus material, we end up 
learning technical tools such as the extremum consistency lemma and uniform law of large 
numbers. 

1. Euler Equations and Conditional Moment Restrictions 

Hansen and Singleton [10] provided an econometric framework for estimating prefer­
ences of an optimizing agent and for testing validity of the model. The representative agent 
maximizes the expected utility 

∞  
max E βtU(Ct), 

t=0 

over random consumption streams that obe

N
y the sequence of budget constraints: 

C
NN NN  

t + Pj,tQj,t = Pj,tQj,t 1 + Wt, t = 0, 1, . . . , −
j=1 j=1 

where Ct is the consumption at time t, Pj,t is the price of security j at time t, Qj,t is the 
amount of security j at time t, N is the number of securities, and Wt is the labor income at 
time t. 

The optimum is characterized by the first order conditions, which can be expressed as: 
U /(Ct+1)

Pj,t = Et

 
β Pj,t+1

 
, j = 1, . . . , J, 

U /(Ct) 
where Et is the expectation conditional on the information available at time t. We can 
interpret this equation as a pricing equation that says that the price of the security j, Pj,t, 
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is the expectation of its value tomorrow, Pj,t+1, times the stochastic discount factor, 

U /(Ct+1)
β

U /(Ct) 
. 

Thus, if we observe the consumption process of an optimizing agent, we can use the re­
sulting stochastic discount factor to price securities. This is called the consumption-based 
capital asset pricing model (CCAPM). Furthermore, if we observed the consumption and 
price processes, we can use the moment restrictions implied by the optimizing behavior 
to learn about agent’s preferences. 

Define the total return Rj,t+1 := Pj,t+1/Pj,t, which we can assume to be stationary. Let’s 
represent Et[·] as the conditional expectation E[· | Zt], where Zt are the variables that 
represent the information available at time t. We can rewrite the optimality condition as 

U /(Ct+1)
E Rj,t+1β − 1 | Zt = 0, j = 1, . . . , J. 

U /(Ct) 

In order to set up estimation we proceed to specify the parametric form of the utility 
function. Hansen and Singleton use the power utility U(x) = x1−α/(1−α), which exhibits 
constant relative risk aversion. The parameter α determines both the risk aversion coeffi­
cient and the intertemporal elasticity of substitution for consumption. Another attractive 
possibility is the Epstein-Zinn [5] utility function that has two different parameters de­
termining the intertemporal elasticity of substitution and risk aversion. With the power 
utility specification   

E Rj,t+1βc
−α − 1 | Zt = 0, j = 1, . . . , N, t+1 

where ct+1 = Ct+1/Ct is the total rate of consumption growth. 

In order to transit to GMM estimation we need to do some logistical work. First we 
define 

ρ(Yt, θ) := [ρj (Yt, θ)]Nj=1 := [Rj,t+1bc
−a − 1]N θ := (a, b)/,t+1 j=1, 

where Yt is a vector comprised of ct+1 and Rj,t+1 for j = 1, . . . , N . Letting θ0 := (α, β), we 
have the conditional moment restriction: 

E[ρ(Yt, θ0) | Zt] = 0. (1.1) 

We can convert this conditional moment restriction into unconditional moment restric­
tions. Let B(Zt) := [B1(Zt), . . . , Br(Zt)]

/ denote a vector of transformations of Zt. Then 

ρ(Yt, θ0) ⊥ B(Zt), 

since by the law of iterated expectations: 

Eρ(Yt, θ0) ⊗ B(Zt) = EE[ρ(Yt, θ0) | Zt] ⊗B(Zt) = 0. (1.2) 
=0 

[ ]
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We call Zt the raw instruments and B(Zt) the technical instruments. This step is important 
and we explain this step as well as the choice of transformations in detail in the next section. 
This means that we can now apply the GMM approach with the score function 

g(Xt, θ) = ρ(Yt, θ) ⊗ B(Zt), Xt := [Y /, B(Zt)
/]/.t 

We also need to specify a weighting matrix A and its estimator. Under the rational 
expectation hypothesis, the stream of scores {g(Xt, θ0)}∞ is an uncorrelated sequence, t=−∞ 
since the past values of Xt belong to the information set. Indeed by the law of iterated 
expectations, 

Eg(Xt, θ0)g(Xt−k, θ0)
/ = EE[g(Xt, θ0) | Xt−k] g(Xt−k, θ0)

/ = 0. 
=0 

Econometricians call such unforecastable sequences as martingale-difference sequences. 

Hence using this hypothesis and imposing the assumption that {Xt}∞ are identically t=−∞ 
distributed, we conclude that the optimal weighting matrix is A := Ω−1, where 

Ω := lim Var( 
√ 
nEng(Xt, θ0)) = E[g(X, θ0)g(X, θ0)/], (1.3) 

n→∞ 

where {Xt}n denotes the available sample. Using this observation Hansen and Singleton t=1 
have proceeded to specify the GMM weighting matrix as Â = Ω̂−1 for 

√
ˆ ˜ ˜Ω := v nEng(Xt, θ0)) = En θ)g(Xt, θ)

/], (1.4)Var( [g(Xt, 

where θ̃ is a preliminary estimator of θ0. The resulting GMM estimator θ̂ then obeys the 
general properties outlined in L3 under plausible regularity conditions. 

Hansen and Singleton applied their model and estimation method to the monthly 
aggregate U.S. consumption, using a U.S. market index (DJI) and treasury bonds (a 
riskless asset) as securities. We mention their choices of technical instruments be­
low in the context of the broader discussion. Hansen and Singleton estimated the 
risk aversion parameter α to lie in an interval between 0 and 1, depending on the 
specification of the instrument set, with large standard error, and the discount fac­
tor of .997 with a very small standard error. They proceeded to statistically reject the 
assumptions of the rational expectations model of the representative consumer with 
the power utility, using the test based on J-statistics (the minimized value of the GMM 
objective function times n). We describe this test below. 

2. From Conditional Restrictions to Unconditional Restrictions 

Here we describe in detail the transition from the conditional to unconditional restric­
tions. As in the previous section we consider vector-valued structural residual function 
ρ(Y, θ) that takes values in RN and θ is the parameter. 
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Suppose that the conditional moment restriction holds at θ = θ0: 
E[ρ(Y, θ0) | Z] = 0. (2.1) 

Consider B(Z) := [B1(Z), . . . , Br(Z)]/ a vector of transformations of Z. Suppose that 
Eρ2 

j (Y, θ0) < ∞ and EB2(Z) < ∞ for each j and k. Then the structural residual k 
function ρ(Y, θ0) is orthogonal to any such B(Z): 

ρ(Y, θ0) ⊥ B(Z) 
that is, 

=0 
E[ρ(Y, θ0) ⊗ B(Z)] = E[ E[ρ(Y, θ0) | Z] ⊗B(Z)] = 0. (2.2) 

This follows from the law of iterated expectation, using the fact that the left side of the 
preceding display is finite:   

E|ρj (Y, θ0)Bk(Z)| ≤ Eρ2(Y, θ0) EB2(Z) < ∞,j k

where the inequality holds by the Cauchy-Schwarz inequality. 

This motivates using Z as well as transformations of Z as technical instruments B(Z). 
Suppose that E[ρj (Y, θ) | Z]  0 with positive probability whenever θ = θ0. This is the =  
identification assumption for the conditional moment restriction. Given this assumption, 
we want to choose B(Z) in order to capture deviations from zero of the following regres­
sion function: 

f(Z) = E[ρj (Y, θ)|Z] 
whenever θ  θ0.= If we can choose B(Z) that are correlated with f(Z), i.e. such that 
Ef(Z)B(Z)  = 0 then we can tell apart false parameter values θ from the true one θ0. This 
is akin to shopping for a set of good instruments that give us a strong “first stage”. There 
are theoretical and practical considerations to take into account: 

Consideration 1. Approximation theory provides us with dictionaries of series terms 

B(Z) = [B1(Z), . . . , Br(Z)]/ 

that can approximate any function f(Z) with Ef2(Z) < ∞ in the mean square error sense: 

min E(f(Z) − γ/B(Z))2 → 0, r → ∞. (2.3)
γ∈Rr 

This means that we can use these dictionaries as technical instruments B(Z) that will be 
correlated with f(Z), that is Ef(Z)B(Z)  0, at least when r is substantial. Examples = 
of dictionaries with the property (2.3) include power transformations, cosine transforma­
tions, wavelets, among others (see 14.381 lecture notes and e.g. Newey [12] and [13]). For 
instance, when Z is a scalar transformed to take values in [0, 1], we can use either of 
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• the polynomial dictionary of size r: B(Z) = (1, Z, Z2, ..., Zr−1)/; 
• the cosine dictionary of size r: B(Z) = (1, cos(πZ), . . . , cos(π(r − 1)Z))/; 
• the linear spline dictionary of size r: B(Z) = (1, Z, (Z − k1)+, . . . , (Z − kr−2)+)

/; 

where k1, . . . kr 2 denote the knots of the spline (a mesh over [0, 1]), and (z) = max(z, 0). − + 
When Z is vector, with each component transformed to take values in [0, 1], we can consider 
dictionaries with respect to each component and then take all interactions. See 14.381 notes 
on regression as well as N ewe y reference   on dictionaries of series terms used. All of the
dictionaries mentioned have the approximation property (2.3), though practical perf or-
mance does obviously depend on the nature of the problem.1 

Consideration 2. Our formal asymptotic theory given below requires the dimension m of 
the score 

g(X, θ) = ρ(Y, θ) ⊗ B(Z), 
to be fixed as n → ∞, which requires r to be fixed. There are rigorous asymptotic results 
by Newey [12] that allow for the growth of m = N ×r, such that m2/n → 0, while retaining 
the validity of consistency and asymptotic normality results outlined in L3. The main point 
we should keep in mind for the canonical form of GMM that we study is the following: 

The number of technical instruments r should be relatively small compared to n.  

If the set of technical instruments is large, and we can’t figure out using economic or 
other reasoning which instruments are the most important ones to keep, we can also em­
ploy variable selection methods. We shall come back to this point later. 

Let’s now go back to Hansen and Singleton’s econometric model. The situation there is 
a lot more complicated: Zt in principle could consist of infinite history, so there are many 
possibilities. Among these, they used B(Zt) consisting of ct and Rj,t as well as several lags 
ct−k and Rj,t−k. This makes sense since very distant lags would be poor predictors for the 
current variables. It is interesting that Hansen and Singlton didn’t consider any nonlinear 
transformations of any of these variables. We could only speculate as to potential reasons: 
one reason perhaps was that just using enough lags was sufficient for statistical rejection 
of the model; or maybe they were motivated by the following point: 

Consideration 3. There is another view on selection of moments/technical instruments 
in GMM framework. If we assume that the model is wrong, then we can interpret our goal 
of estimating θ0 as finding a model θ0 within Θ that describes well certain finite collection 
of moments (“properties of the real world”), in the sense of minimizing g(θ)/Ag(θ). This 

1For instance, if z  → f(z) behaves like a wave, then cosine transformations will tend to do the best job, if 
z  → f(z) looks like a polynomial, then polynomials tend to the best, if z  → f(z) exhibits spikes, then b-splines 
tend to perform best. The 14.381 notes provide concrete approximation examples. 
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motivates us to use economic reasoning in selecting the most important moments (“prop­
erties we want to explain”) to put in the GMM estimation. In this case GMM estimation 
becomes like a formal calibration often used by macro-economists, because they don’t take 
their models as literal descriptions of the real world. This type of consideration is useful 
to keep in mind though harder to use as a guide in empirical work. For example, we may 
want to “calibrate” the Hansen-Singleton model to ”explain” the risk premium. 

3. Asymptotic Properties of Nonlinear GMM and the J- Test 

3.1. Statement and Assumptions. Here is our formal result concerning the properties of 
the nonlinear GMM. 

We begin with general conditions, which are of high-level nature, but show some key 
ingredients that are sufficient for the result. 

Condition G: (a) The parameter space Θ is a compact subset of Rd, and the true value 
θ0 lies in the interior of Θ. (b) The moment function θ  → g(θ) identifies θ0: g(θ) = 0 
if and only if θ = θ0. (c) The empirical moment map θ  → ĝ(θ) converges uniformly in 
probability to the population moment map θ  → g(θ), namely supθ∈Θ Iĝ(θ) − g(θ)I →P 
0. (d) The estimator of the weighting matrix is consistent for a positive definite matrix, 
Â →P A > 0. (e) The empirical Jacobian θ  → Ĝ(θ) = (∂/∂θ/)ĝ(θ) is continuous and 
is uniformly consistent for the continuous population Jacobian matrix, θ  → G(θ) = 
(∂/∂θ/)g(θ), namely supθ∈Θ IĜ(θ) − G(θ)I →P 0. (f) The minimal eigenvalue of G/G, 
where G = G(θ0), is bounded away from zero. (g) The empirical moment function 
evaluated at the true parameter value obeys a central limit theorem: 

√ a
nĝ(θ0) ∼ N(0, Ω). 

In this condition only the hatted quantities depend on n and others do not. 

These general conditions are quite plausible, as we discuss below. They imply the fol­
lowing useful formal result that justifies our Assertion 1 in L3. 

Theorem 1 (Consistency and Asymptotic Normality of GMM). Under condition G the 
GMM estimator [8] 

θ̂ ∈ arg min ĝ(θ)/Âĝ(θ) 
θ∈Θ 

exists (yay!), and is consistent and asymptotically normal, namely 
a√ 

n(θ̂ − θ0) ∼ (G/AG)−1G/AE, E ∼ N(0, Ω). 
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An important consequence of this result concerns the J-statistic, which is useful for test­
ing the validity of the moment restrictions. 

Theorem 2 (J-statistic). Under condition G, the minimized value of the optimally weighted 
GMM criterion function times the sample size is asymptotically distributed as χ2 variable with 
m − d degrees of freedom, namely 

a
J = nĝ(θ̂)/Ω̂−1ĝ(θ̂) ∼ χ2(m − d), 

provided Ω̂ →P Ω. 

We leave the proof of this theorem as an exercise for the theoretically minded reader. 
Note that the limit distribution is quite intuitive: the χ2 distribution arises from using 
the quadratic form and the degrees of freedom takes the dimension m of the vector of 
the quadratic forms and subtracts off the dimension d of the parameter vector over which 
we minimized this quadratic form. This is obviously not a proof, but a useful mnemonic 
device to remember the result. 

When m > d, we can use the J-statistic to test the null hypothesis of validity of 
the moment conditions, where the null is Ho : ∃θ ∈ Θ : g(θ) = 0 and the alternative 
is Ha : Mθ ∈ Θ : g(θ) = 0. Large values of the statistic J provide evidence against 
the null hypothesis. The J-test statistically rejects the null at the significance level p if 
J > (1 − p)-quantile of χ2(m − d). 

In the context of IV analysis, as in L3 or as in Hansen-Singleton example, the J-test allows 
us to test the “validity of the exclusion or exogeneity restrictions,” namely the hypothesis 
that the structural residuals are uncorrelated to the technical instruments, i.e. (1.2). The 
rejection of the null could be interpreted as statistical evidence against the assumption of 
certain instruments being excluded/exogenous as well as the validity of any other modeling 
assumptions. For example, Hansen and Singleton interpret their rejection as the statistical 
rejection of the representative consumer with power utility and rational expectations. The 
rejection is silent about which features of the model are not right. 

We should be careful with the interpretation of the statistical rejection of economic mod­
els: Statistical rejection of the model does not necessarily mean that the model is not suit­
able for purposes of economic analysis. (See also Consideration 3 in Section 2). For ex­
ample, models based on rational expectations are widely used in macro-economics; the 
well-known Black-Scholes [2] option pricing formula is widely used in financial econom­
ics, despite the fact that benchmark versions of these models are statistically rejected by a 
specification test such as the J-test. 
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Concise (and hence wrong) economic models can provide a coherent way to ask and 
(partly) answer economic questions about the real world. Statistical rejection of such 
models does not mean that these models necessarily give bad answers to economic 
questions. However, statistical tests could be useful in selecting amongst competing 
economic models. 

3.2. Discussion of Conditions. We note that the stated condition G are merely sufficient 
for the validity of the general statement given in Assertion 1. Econometricians have pro­
vided much more general conditions than G. We focus on G here due to their concreteness 
and wide applicability. We discuss each of the conditions in detail. 

The most important practical matter is to verify that indeed the true parameter value 
θ0 is such that 

g(θ0) = 0. 
This involves careful economic thinking, e.g., as in Hansen and Singleton (1982). Non­
linearities sometimes make it analytically more difficult to verify this condition. If 
g(θ0) = 0 your GMM estimator will be consistent for the wrong parameter value, that 
is, inconsistent for θ0. 

Another matter is that the nonlinear case is technically more demanding, though this is 
less relevant for practice, because econometricians worked hard on developing plausible 
regularity conditions. Let’s discuss these conditions systematically. 

First, we impose the compactness condition, which we did not impose in the linear case. 
Compactness is useful in justifying that a minimum exists and in verifying uniform con­
vergence. It can be dropped if ĝ is a gradient of convex function, which was trivially true 
in the linear case. We impose that the true parameter θ0 lies in the interior in order to per­
form linearization by Taylor expansion of the first order conditions, see the proof; in the 
linear case, the linearity held trivially. 

Second, we impose the “global identification” condition 

g(θ) = 0 if and only if θ = θ0, (3.1) 

and the “local identification” condition that the minimal eigenvalue of G/G is greater than 
zero, which is the same as saying that 

rank(G) = full. (3.2) 

In the linear case the two were equivalent, and here they are not in general. We can have 
global identification but have deficient rank for G: for example, g(θ) = θ2 = 0 if and only 
if θ = θ0 := 0 but G(θ) = 2θ = 0 at θ = θ0. On the other hand, (3.2) does not imply (3.1): 

6=
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for example, g(θ) = θ2 − 1 = 0 if either θ = 1 or −1, and if θ0 = 1, then G(θ) = 2θ = 2 at 
θ = θ0. 

Note, however, that the full rank condition (3.2) implies local uniqueness of θ0: namely, 
g(θ) = 0 if and only if θ = θ0 for all θ ∈ N , where N is an open neighborhood of θ0 (this fol­
lows from the implicit function theorem, see Appendix). For this reason, econometricians 
say that the full rank condition implies “local identification”. 

To go further, if G(θ) has full rank at each θ ∈ Θ this does imply together with compact­
ness of Θ that the number of solutions to g(θ) = 0 is finite (see Appendix). In principle, we 
could adjust our estimation results to handle the case with a finite number of solutions, 
but such cases seem to be rare in practice. It is interesting to also note that there are further 
strong sufficient conditions that force the number of solutions to 1 (these conditions follow 
from the global implicit function theorems of Mas-Colell [11]; their use has to be justified 
in specific applications; see [3, 4] for applications in econometrics). 

Third, having mineig(G/G) being bounded away from zero is important for our asymp­
totic results in Theorem 1 to provide good approximation to the finite-sample behavior of 
the estimator. Indeed, from the statement and proof we need the separation, 

mineig(G/AG) ≥ mineig(G/G)mineig(A) > 0, 

so that the noisy version mineig(Ĝ/ÂĜ) is well-separated from zero. If it is well-separated, 
then we are in the “strongly identified” case and the normal approximation is good; oth­
erwise are in the “weakly identified” case and need to use alternative approaches to infer­
ence. Thus, in some sense, mineig(G/G) measures how well θ0 is identified, generalizing 
the notion of the “first stage” to the nonlinear case. 

Fourth, relative to the linear case, we see the emergence of the uniform convergence 
requirements, supθ∈Θ Iĝ(θ)−g(θ)I →P 0 and supθ∈Θ IĜ(θ)−G(θ)I →P 0. In the linear case 
these conditions hold automatically. We need these conditions to establish consistency and 
asymptotic normality; see the proof. 

Let’s focus on the first requirement, supθ∈Θ Iĝ(θ) − g(θ)I →P 0. This condition is 
stronger than the pointwise convergence condition ĝ(θ) →P g(θ) holding for each θ. In­
deed, even deterministic uniform convergence does not in general follow from the point-
wise convergence. Thus, we can not hope to obtain the uniform convergence in probability 
merely through the applications of the usual (pointwise) laws of large numbers. Instead, 
in order to verify the uniform convergence conditions, we need to employ the uniform law 
of large numbers – Lemma 4 stated in the Appendix – which implies the following result. 

Lemma 1 (Sufficient Condition for the Uniform Convergence). Suppose that Θ is com­
pact, that θ  → g(X, θ) is continuously differentiable with derivative θ  → G(X, θ), that the  
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envelopes of these maps have bounded expectations, namely E supθ ∈Θ Ig(X, θ)I < ∞ and 
E supθ ∈Θ IG(X, θ)I < ∞, and that {Xi } are i.i.d. or stationary strongly mixing series. Then 
supθ ∈Θ Iĝ(θ) − g(θ)I →P 0 and supθ ∈Θ IĜ(θ) − G(θ)I →P 0. 

Finally, we need a central limit theorem for the empirical average of the scores.  

Lemma 2 (Sufficient Condition for CLT via Gordin’s CLT). Consider the centered sequence 
{g(Xi , θ0)}∞ that is i.i.d. or stationary and strongly mixing with mixing coefficients obeyingi =1 ∞ δ/ (2+δ )

α < ∞ and suppose that EIg(X, θ0)I2+δ < ∞ for δ > 0, then j =1 j 
√ √a
nEn g(Xi , θ0) ∼ N(0, Ω), Ω = lim Var( nEn g(Xi , θ0)), 

n →∞ 

where under i.i.d. sampling Ω simplifies to Eg(X, θ0)g(X, θ0)/. Otherwise, 
∞N 

Ω = Σ0 + (Σ£ +Σ/
£ ), Σ£ = Eg(Xi , θ0)g(Xi +£ , θ0)

/ 

£ =1 

Note that this is merely an application of the classical Gordin’s CLT [7] from 14.381.2 

This result also motivates estimation of Ω that we have been considering so far in the i.i.d 
case; in the time series case, we need to consider the Newey-West [14] or various other 
estimators. For example, the Newey-West estimator of Ω, 

L n −£N N 
ˆ ˆ ˜ ˜Ω = Σ̂0 + ω£L (Σ̂£ + Σ̂£ 

/ ), Σ£ = g(Xi , θ)g(Xi +£ , θ)/n, ω£L = 1 − £/(L + 1), 
£ =1 i =1 

is positive semidefinite. 

3.3. Proof of Theorem 1. The proof contains three steps. In Step 1 we demonstrate con­
sistency. In Step 2, we demonstrate asymptotic normality. In Step 3, we collect supporting, 
less-interesting calculations. 

Step 1 (Consistency). This step establishes consistency. We have for 

Q̂(θ) := ĝ(θ)/Âĝ(θ), Q(θ) := g(θ)/Ag(θ), 
that 

sup |Q̂(θ) − Q(θ)| →P 0. 
θ ∈Θ 

2The mixing coefficients are αj = supA,B,n,m |Pn(A∩B)−Pn(A)Pn(B)|, for A and B ranging over σ-fields 
generated respectively by (Xt : 1 ≤ t ≤ m) and (Xt : m + j ≤ t < ∞). 
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This follows from the assumed uniform convergence supθ∈Θ |ĝ(θ) − g(θ)| →P 0 and Â →P 
A. Step 3(a) below supplies the details. Application of the Extremum Consistency Lemma 
gives that any θ̂ ∈ arg minθ∈Θ Q̂(θ) obeys θ̂ →P θ0 = arg minθ∈Θ Q(θ), where θ0 is the 
unique minimum of Q(θ) by the identification condition. Note that both of the argmins 
exist (yay!) because continuous functions attain minimum on compact sets. 

Step 2 (Normality). For Ĝ(θ̂) = (∂/∂θ/)ĝ(θ̂), a Taylor expansion of the first order condi­
tions gives 

0 = Ĝ(θ̂)/Âĝ(θ̂) = Ĝ(θ̂)/Â{ĝ(θ0) + Ĝ(θ̄)[θ̂ − θ0]}, 

where Ĝ(θ̄) stands for (∂/∂θ/)ĝ(θ̄), which denotes the Jacobian matrix whose each row is 
evaluated at (a row-dependent) θ̄ located on the line joining θ0 and θ̂. 

The uniform convergence hypotheses, continuity hypotheses on θ  → G(θ) and consis­
tency θ̂ →P θ0 yield that 

IĜ(θ̂) − GI →P 0, IĜ(θ̄) − GI →P 0, where G := G(θ0). 

Step 3(b) gives details. 

Hence these calculations and the assumption Â →P A yield by the continuous mapping 
theorem that 

Ĝ(θ̂)/Â →P G
/A, Ĝ(θ̂)/ÂĜ(θ̄) →P G

/AG, (Ĝ(θ̂)/ÂĜ(θ̄))−1 →P (G
/AG)−1 , 

where G/AG > 0 by A > 0 and the full rank assumption on G. 

Thus, with probability approaching one, we can solve for the deviation: 

√ 
n(θ̂ − θ0) = −[Ĝ(θ̂)/ÂĜ(θ̄)]−1Ĝ(θ̂)/Â

√ 
nĝ(θ0). 

aBy the derivations given above, and since 
√ 
nĝ(θ0) ∼ E = N(0, Ω) by assumption, we 

conclude by the continuous mapping theorem, 

a√ 
n(θ̂ − θ0) ∼ (G/AG)−1G/AE. 

Step 3 (Boring Calculations). This step can be skipped on the first reading of the proof.  
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(a) It follows from the triangle inequality that supθ Θ Iĝ(θ)I ≤ sup (∈ θ ˆ∈Θ Ig θ) −
supθ Θ Ig(θ)I = OP (1). Let ∈ IAI be the maximum eigenvalue of A (operator nor

 g(θ)I + 
m). Then      ĝ(θ)/(Â− A)ˆsup  

   Q̂(θ) − Q(θ)
   ≤ sup  

   + 
   [ĝ(θ) − g(θ)]/A[ĝ(θ) − g(θ)]

   g(θ) 
θ∈Θ θ∈Θ   

+2 
      ĝ(θ)/A[ĝ(θ) − g(θ)]

≤ sup Iĝ(θ)I2IÂ− AI + sup Iĝ(θ) − g(θ)I2IAI 
θ∈Θ θ∈Θ 

+2 sup Iĝ(θ)IIAI sup Iĝ(θ) − g(θ)I →P 0. 
θ∈Θ θ∈Θ 

(b) We have by the uniform convergence hypothesis that 

IĜ(θ̂) − G(θ̂)I →P 0, IĜ(θ̄) − G(θ̄)I →P 0, 

where G(θ̄) stands for (∂/∂θ/)g(θ̄), which denotes the Jacobian matrix whose each row 
is evaluated at (a row-dependent) θ̄ located on the line joining θ0 and θ̂. The continuity 
hypothesis on θ  → G(θ), consistency θ̂ →P θ0, and θ̄ →P θ0, and the continuous mapping 
theorem imply that 

IG(θ̂) − G(θ0)I →P 0, IG(θ̄) − G(θ0)I →P 0, G(θ0) = G. 

• 

4. Continuously Updated GMM and Inference under Weak Identification 

The continuously updated GMM estimator (CUE) [9] takes the form 

θ̂∗ ∈ arg min ĝ(θ)/Â(θ)ĝ(θ), Â(θ) = Ω̂(θ)−1 
θ∈Θ 

where √
Ω̂(θ) = Var( v nĝ(θ)). 

This form is quite intuitive because it uses inverse of a variance matrix (indexed by θ) 
directly in the formulation of the GMM estimator. This estimator avoids iteration like the 
iterated GMM and instead uses a plug-in estimator for the variance matrix indexed by θ. 
Under i.i.d. sampling, the estimator is 

Ω̂(θ) = Eng(X, θ)g(X, θ)/ − [Eng(X, θ)][Eng(X, θ)]/. 

Under time series sampling, we can use the Newey-West estimator Var( v √ 
nĝ(θ)) etc. The 

CUE has similar properties to GMM, and behaves better in some circumstances.3 

3For example, in the single-equation linear IV model with Gaussian errors, CUE reduces to the limited 
information maximum likelihood estimator, which is known to have better finite-sample properties than the 
two-stage least squares when the number of instruments is large. 
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Theorem 3 (Consistency and Asymptotic Normality of CUE). Suppose condition G holds 
and that the weighting matrices are uniformly consistent for some positive definite matrices 

sup IÂ(θ) − A(θ)I →P 0, 
θ∈Θ 

where the map θ  → A(θ) := Ω(θ)−1 is continuous and minθ∈Θ mineigA(θ) > 0, and where 
Ω(θ) := limn→∞ Var( 

√ 
nĝ(θ)). Then the CUE estimator is first-order equivalent to the opti­

mal GMM estimator: √ 
n(θ̂∗ − θ̂) →P 0, 

and so it inherits the consistency and asymptotic normality properties of the GMM estimator. 

The proof of this result is omitted. 

The continuously updated formulation is particularly amenable to inference under weak 
or partial identification, following the Anderson-Rubin (AR) approach [1]. The weak iden­
tification arises when the minimal eigenvalue of G/G is close to zero, relative to the sam­
pling error. There is an analog of the F-test for weak identification that was developed by 
Wright [17]. 

We can formally capture this situation through a mental exercise, where we look at 
data streams {Xi,n}∞ of identically distributed random vectors with law Fn, but the law i=1 
changes with n. We have the freedom to do this mental exercise, just like we have the 
freedom to do the mental exercises of the conventional asymptotics approximations where 
we let n → ∞ but keep F fixed. In the “weak identification” exercise, as n → ∞, Fn is 
such that the minimal eigenvalue of G/G = G/ Gn is zero or drifts to zero as n → ∞,n

where Gn = (∂/∂θ/)Eg(Xi,n, θ0). Under this scenario the previous “strong identification” 
asymptotics breaks down. However, we can still rely on the following simple result for 
inference. 

Theorem 4 (Weak Identification Robust Inference). Suppose empirical moments are 
aasymptotically normally distributed, namely 

√ 
n(ĝ(θ) − g(θ)) ∼ N(0, Ω(θ)), for each θ ∈ Θ. 

Assume that θ  → Â(θ) obeys Â(θ) →P Ω(θ)
−1 for each θ ∈ Θ. Then for any θ0 such that 

g(θ0) = 0, we have that 
a

W (θ0) = nĝ(θ0)/Â(θ0)ĝ(θ0) ∼ χ2(m). 

The result follows trivially from the assumptions and the continuous mapping theorem. 
The result generalizes the previous result in L2 on the weak-identification robust inference 
to the general case. Note also that the result applies when g(θ) = 0 has multiple solutions 



14 VICTOR CHERNOZHUKOV AND IV AN´  FERNANDEZ- ´ VAL 

(in which case the true parameter value is said to be partially identified). Consequently, 
the confidence region 

CR1−p = {θ ∈ Θ : W (θ) ≤ c1−p}, 
where c1−p is (1 − p)-quantile of χ2(m), contains θ0 with asymptotic probability 1 − p: 

P (θ0 ∈ CR1−p) = P(W (θ0) ≤ c1−p) → P(χ2(m) ≤ c1−p) = 1 − p, n → ∞. 

We can approximate this confidence region in practice by specifying a grid of parameter 
values and then collecting all parameter values with the AR statistic less than the criti­
cal value. In the exactly identified case, when m = d, this approach gives a good way to 
perform inference in weakly identified. In the over-identified case, when m > d, this ap­
proach could be improved by employing other statistics; we refer to the work by Andrews 
and Mikusheva “Conditional Inference with a Functional Nuisance Parameter” for what 
appears to be the state-of-the art approach at the moment. 

5. A GMM Analysis of the Consumption CAPM 

Here we revisit Hansen-Singleton’s analysis using the 1959-2015 U.S. monthly data on 
aggregate per-capita consumption of non-durable goods, the S&P 500 stock index, and the 
1-year maturity U.S. treasury bonds. We have deflated all the returns using a non-durable 
consumption deflactor. We then constructed the series of Yt = (ct+1, R1,t+1, R2,t+1)

/ repre­
senting the total consumption return, the total return on the bonds, and the total return on 
the stock index. In this data the raw instruments Zt could consist of the lags Yt−1, Yt−2, .... 
In what follows we consider using only one lag for simplicity. 

We then proceeded to estimate Hansen-Singleton’s model of a representative consumer 
holding rational expectations and having the power utility, as described in Section 1. We 
used the iterated GMM and CUE estimator and considered the following two basic sce­
narios for the technical instrument set: 

(1) the first lag only; i.e. 
/B(Zt) = (1, ct, R1,t, R2,t),

(2) the first lag and all the squares and interactions in the first lag; i.e. 
2B(Zt) = (1, ct, R1,t, R2,t, c , R2 , R2 , ctR1,t, ctR2,t, R1,tR2,t)

/.t 1,t 2,t

We also use the fact that the rational expectation assumption implies that scores are not 
correlated, yielding the variance simplification (1.3) and we use the corresponding vari­
ance estimator (1.4) in obtaining the optimal weights and computing the standard errors.4 

4The results do not change qualitatively if we use Newey-West estimator that takes into account the poten­
tial correlation of the scores, which arises when we depart from the rational expectation assumption. 
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In both cases, the J-tests statistically rejects the model, which we can interpret as the 
model being unable to explain even very few key moments of the real data. Moreover, 
in this case GMM and CUE estimators yield very different estimates of the preference 
parameters, which is consistent with the statistical misspecification of the model. Note that 
under the misspecification the choice of the weighting matrix determines the pseudo-true 
values for which the GMM and CUE estimators are consistent and under misspecification 
GMM and CUE estimators converge to such different pseudo-true values and thus are no 
longer asymptotically equivalent.5 

Table 1. Estimation Results for the Consumption CAPM 

GMM-1 CUE-1 GMM-2 CUE-2 
estimated α 0.114 4.220 0.097 2.585 
std. error (0.037) (0.548) (0.033) (0.277) 
estimated β 0.998 1.003 0.998 1.001 
std. error (0.000) (0.001) (0.000) (0.001) 
J-statistic 213.008 52.882 245.100 74.802 
p-value 0.000 0.000 0.000 0.000 

6. GMM under Misspecification∗ 

Misspecification arises as a consequence of failure of various modeling assumptions. By 
misspecification we mean here that there is no θ0 such that g(θ0) = 0. However, we can 
define the pseudo-true of the parameter as the value that minimizes the distance between 
moment functions and zero 

θ0 = arg min g(θ)/Ag(θ). 
θ∈Θ 

In structural equation modeling, this is interpreted as trying to find a model that best 
describes properties of the real world encoded by moments. Under misspecification the 
choice of A affects the definition of the pseudo-true value and so the choice of A becomes 
very important and should be driven by economic reasoning, as opposed to the statistical 
reasoning. In application, we would want to chose A so that we give more weight to the 
moments we want to explain, and this is an application-specific matter. See, e.g., the paper 
by Jaganathan and Hansen,6 where they study the problem of choosing the best economic 
model for stochastic discount factors, and use the inverse of variance covariance matrix 
of total returns as the weighting matrix A, and they gave an economic rationale for such 
weighting method. 

5We did not study the GMM estimation under misspecification, but the basic points made here follow 
immediately from the Extremum Consistency Lemma.

6Hansen, Lars Peter, and Ravi Jagannathan. ”Assessing specification errors in stochastic discount factor 
models.” The Journal of Finance 52.2 (1997): 557-590. 
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Notes 

Lars Hansen introduced the Generalized Method of Moments (GMM) and studied its 
properties in [8]. He first applied GMM to the Consumption CAPM model in [10], to­
gether with Kenneth Singleton. GMM can be seen as a generalization of the Method of Mo­
ments of Karl Pearson and the Method of Estimating Equations of Vidyadhar Prabakhar 
Godambe. The Continuously Updated GMM estimator was introduced in [9]. 

Appendix A. Tools 

The appendix contains technical material. You only need to know the statements of the 
results and know how to apply them. If you plan to be an econometrician, it is a good idea 
to also learn the proofs. 

A.1. Tool 1: Extremum Consistency Lemma. Consider the extremum estimator 

θ̂ ∈ arg min QQ(θ). 
θ∈Θ 

We assume that the estimator θ̂ exists throughout to simplify statements. This holds true, 
for example, if θ  → QQ(θ) is continuous as a map from Θ to R almost surely, and Θ is 
compact. 

Lemma 3 (Extremum Consistency). We assume the θ̂ exists. Suppose (i) supθ∈Θ |Q̂(θ) − 
Q(θ)| →P 0, (ii) Q(θ) > Q(θ0) for all θ = θ0 , (iii) Θ is compact and θ  → Q(θ) is continuous. 
Then θ̂ →P θ0. 

For intuition it is helpful to draw a picture that describes the theorem. 

Proof. The proof has three steps: 1) we need to show Q(θ̂) →P Q(θ0) using the assumed 
uniform convergence of Q̂ to Q, and 2) we need to show that this implies that θ̂ must be 
close to θ0 using continuity of Q, compactness of Θ, and the fact that θ0 is the unique 
minimizer, 3) we then try to understand what happened in steps 1 and 2. 

Step 1. By the uniform convergence, 

Q̂(θ̂) − Q(θ̂) →P 0 and Q̂(θ0) − Q(θ0) →P 0. 

Also, by Q̂(θ̂) and Q(θ0) being minima, 

Q(θ0) ≤ Q(θ̂) and Q̂(θ̂) ≤ Q̂(θ0). 

6
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Therefore 

Q(θ0) ≤ Q(θ̂) = Q̂(θ̂) + [Q(θ̂) − Q̂(θ̂)] ≤ Q̂(θ0) + [Q(θ̂) − Q̂(θ̂)] 
= Q(θ0) + Q̂(θ0) − Q(θ0) + Q(θ̂) − Q̂(θ̂), 

oP (1) by the uniform convergence 

implying that Q(θ0) ≤ Q(θ̂) ≤ Q(θ0) + oP (1). It follows that Q(θ̂) →P Q(θ0). 

Step 2. By compactness of Θ and continuity of Q(θ), for any open subset N of Θ con­
taining θ0, we have that 

inf Q(θ) > Q(θ0). 
θ/∈N 

Indeed, infθ/∈N Q(θ) = Q(θ∗) for some θ∗ ∈ Θ \ N . By identification, Q(θ∗) > Q(θ0). 

But, by Q(θ̂) →P Q(θ0), we have 

Q(θ̂) < inf Q(θ), 
θ/∈N 

with probability approaching one for all large n, and hence θ̂ ∈ N with probability ap­
proaching one for all large n. • 

A.2. Tool 2: The Uniform Law of Large Numbers. The following is a very useful uniform 
law of large numbers. 

Lemma 4 (Uniform Law of Large Numbers). Assume that (Xi)
∞ is an i.i.d. or stationary i=1 

strongly mixing sequence. Consider a map (z, θ)  → m(z, θ). Define M̂(θ) := En[m(X, θ)]. 
Suppose that (i) θ  → m(X, θ) is continuous at each θ ∈ Θ with probability one; (ii) Θ is 
compact, and (iii) E[supθ∈Θ |m(X, θ)|] < ∞. Then θ  → M(θ) := E[m(X, θ)] is continuous 
on Θ and 

sup |M̂(θ) − M(θ)| →P 0. 
θ∈Θ 

The proof applies more generally to any stationary ergodic process. 

Proof. We prove that for any E > 0, supθ∈Θ M̂(θ) − M(θ) ≤ E with probability approach­
ing one. A similar argument shows that we also have that with probability approaching 
one supθ∈Θ M(θ) − M̂(θ) ≤ E, which implies the claim. 

First, we show that for every ε > 0 there is a finite cover of Θ by balls (Uθ(j))
p suchj=1 

that 
max 
j≤p 

EDUθ(j) (X) ≤ ε, DU (X) := sup 
θ̄∈U 

[m(X, θ̄) − Em(X, θ̄)]. 
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Indeed for each θ Θ, let U θ be a decreasing sequence of open balls in Θ with    ∈   l,θ � { }           
diameter converging to zero. The continuity hypothesis and the dominated convergence 
theorem imply that θ  → Em(X, θ) is continuous at any given θ, and therefore yield that 
DUl,θ (X) � (m(X, θ) − Em(X, θ)). By the dominated convergence theorem, EDUl,θ (X) � 
0. Hence for each θ, we can find l0(θ) such that for l > l0(θ) we have EDUl,θ (X) < ε. By 
compactness of Θ the open cover {Ul,θ : l > l0(θ), θ ∈ Θ} has a finite subcover (Uθ(j))

p 
j=1 

for which the claim holds. 

Second, we have by the (ordinary) law of large numbers for i.i.d. or strongly mixing 
data that 

sup M̂(θ) − M(θ) ≤ max EnDUθ(j) (Xi) →P max EDUθ(j) (Xi) ≤ ε. 
j≤p j≤pθ∈Θ 

Since ε > 0 is arbitrary the claim follows. • 

A.3. Tool 3: Uniqueness of Solutions to System of Equations*. This is more advanced 
material given for reference purposes. Here we take the opportunity to discuss the ques­
tions of uniqueness of solutions to system of nonlinear equations g(θ) = 0, where θ  → g(θ) 
is a C1 mapping from an open neighborhood of Θ ⊂ Rd to Rd . Denote the Jacobian map 
by θ  → G(θ). 

Lemma 5 (Local Uniqueness). (1) Suppose that g(θ0) = 0 and G = G(θ0) has full rank, then 
there exists an open neighborhood N of θ0 such that g(θ) = 0 for all θ ∈ N \ {θ0}. (2) Moreover, if 
Θ is compact and G(θ) = (∂/∂θ/)g(θ) has full (column) rank for each θ, the number of solutions 
to g(θ) = 0 is finite. 

Proof. (1) By the Implicit Function Theorem there exists an open neighborhood N of θ0 
such that g is injective between N and the image set g(N ) := {g(θ) : θ ∈ N}. 

(2) By the Implicit Function Theorem, we can cover Θ with a collection of open sets Nk 
such that g is injective between Nk and the image set g(Nk). By compactness there is a finite 
sub cover {Nk} over Θ. Each of the sets Nk can have at most one solution θk to g(θ) = 0. • 

Lemma 6 (Global Uniqueness via Quasi-Positive Definiteness). Suppose that Θ is a convex 
bounded set of full dimension, g(θ0) = 0, and G(θ) + G(θ)/ > 0 for all θ ∈ Θ. Then g(θ) = 0 has 
a unique solution at θ0. 

Proof. By Gale and Nikaido’s Global Implicit Function Theorem [6], such g is injective 
between Θ and g(Θ). • 

This result is useful when g is a gradient of a convex function, as for example, in pro­
bit/logit estimation to be discussed later. In that case the Jacobian is symmetric G(θ) = 
G(θ)/ and positive definite under mild assumptions. 

6
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Lemma 7 (Global Uniqueness via Positive Principal Minors). Suppose that Θ is a rectangular 
set of full dimension and g(θ0) = 0, and that determinant of G(θ) is positive and all other principal 
sub matrices of order less than d have nonnegative determinants, for all θ ∈ Θ. Then g(θ) = 0 has 
a unique solution at θ0. 

Proof. By Gale and Nikaido’s Global Implicit Function Theorem [6], such g is injective 
between Θ and g(Θ). • 

Lemma 8 (Global Uniqueness via Generalized Positive Principal Minors). Suppose that Θ 
is a compact, convex polyhedron of full dimension and g(θ0) = 0. Suppose that for every θ ∈ Θ 
and every linear space L spanned by a face of Θ containing θ , the determinant of the linear map 
from L to L formed by projecting the operator G(θ) on L has a positive sign. Then g(θ) = 0 has a 
unique solution at θ0. 

Proof. By Mas-Colell’s Global Implicit Function Theorem [11], such g is injective be­
tween Θ and g(Θ). • 

Lemma 9 (Global Identification via Generalized Positive-Quasi-Definiteness). Suppose that 
Θ is a compact, convex set of full dimension with C1 boundary ∂Θ and g(θ0) = 0. Suppose that for 
every θ ∈ Θ, the determinant of G(θ) is positive, and that for each θ ∈ ∂Θ, v/(G(θ)+ G(θ)/)v = 0 
for all v ∈ Tθ : v = 0, where Tθ is the tangent plane of ∂Θ at θ. Then g(θ) = 0 has a unique 
solution at θ0. 

Proof. By Mas-Colell’s Global Implicit Function Theorem [11], such g is injective be­
tween Θ and g(Θ). • 

The last two results require some mathematical sophistication on the part of the reader. 
For an application of the penultimate lemma to identification of structural quantile models, 
see [3, 4]. 

Appendix B. Problems 

(1) Suppose we want to test the equality of projection parameter γ in the regression 
model: 

Y = Dγ + U, U ⊥ D,  
and of the structural parameter α in the structural equation model  

Y = Dα + E, E ⊥ Z. 
Represent the joint problem of estimation of γ and α in the GMM framework by 
“stacking” together the two systems of moment equations that can be used to iden­
tify γ and α. Write down the resulting score function, and the properties of the 
GMM estimator of γ and α. State any additional assumptions you may need. From 

6
6
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this deduce the properties of the GMM estimator for the difference α − γ and de­
scribe its large sample properties. Construct a Wald test for the equality α = γ of 
the parameters. This resulting construction yields a version of the Hausman test. 

(2) If you like art, try to give a graph-theoretic depiction of the structural equation 
model given by the system of equations (1.1). The article by Judea Pearl in Statistics 
Surveys [15] explains the art. In L2 and L3 we presented graph-theoretic depictions 
of the two structural equation models with instrumental variables. Graphs could 
be used to nicely decorate one’s research article as well as reduce boredom. 

(3) Provide the proof of Theorem 2. This follows from expanding 
√ 
nĝ(θ̂) as 

√ 
nĝ(θ0)+ 

Ĝ(θ̄) 
√ 
n(θ̂ − θ) and then substituting in the first order expansion for 

√ 
n(θ̂ − θ) = −(G/Ω−1G)−1G/Ω−1√ 

nĝ(θ0) + oP (1), 

which was obtained in the proof of Theorem 1. Finish the proof by the appeal to the 
continuous mapping theorem and using the properties of the normal distribution. 

(4) Work with the Hansen-Singleton model.	 Describe how Euler equations lead to 
conditional moment restrictions and how conditional moment restrictions yield 
unconditional moment restrictions. Explain how you can set up the score func­
tions for GMM estimation and properties of the resulting estimator. How does the 
rational expectation assumption affect the form of Ω? Provide primitive regularity 
conditions that imply condition G (that is, give (as primitive as possible) condi­
tions on the consumption and price processes such that condition G holds). State 
the large sample properties of the GMM estimator. 

(5) Adapt condition G to the misspecified case as in Section 6, prove consistency for 
the pseudo-true value and asymptotic normality the estimator. Explain the role of 
the extremum consistency lemma in the proof. 

(6) Using the data provided  GMM-based  estimation and specification     
consumption CAPM model along the lines of 
that you should use 2 lags of financial returns as instruments.  (Begin  by  replicating
 Section 5, but please don’t report the replication results). The results   there
were produced  in R  using the gmm package.
 you  are  doing;  the  Hansen  and  Singleton’s  article  is  a  good  example  of ho w y ou  

(7) If you like challenges, provide GMM-based estimation and specification testing for 
the consumption CAPM model along the lines of Section 5, except for the power 
utility specification, try the Epstein-Zinn time non-separable utility specification. 

testing for the
Section 5, with the difference being

reported
Provide detailed explanations for what

could write things up.
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This utility specification leads to a stochastic discount factor for the form: 

βλ(Ct+1/Ct)
−αλRλ−1 

0,t+1, 

where R0,t+1 is the total return on the optimal portfolio (see, e.g. Stock and Wright 
article in Econometrica [16]). In this parameterization the risk aversion is 1−λ(1−α) 
and the elasticity of the intertemporal substituion is 1/λ. 
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