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14.382 L3. STRUCTURAL EQUATIONS MODELS AND GMM 

VICTOR CHERNOZHUKOV AND IV AN´  FERNANDEZ- ´ VAL 

Abstract. Here we analyze a system of simultaneous equations arising in the supply-demand 
analysis. We derive a system of moment conditions that potentially identify the structural 
parameters and naturally arrive at a generalized method of moments (GMM) estimator. We 
end up outlining the general properties of the GMM estimator, and formally verifying these 
properties for linear moment condition models. 

1. Wright’s Supply-Demand System of Simultaneous Equations 

Following the original work of Wright in 1928 on demand and supply for tobacco, we 
consider the following system of equations where quantities and prices are in logs: 

 Y d = α p + α/ Zd + α/ W + Ed , Ed 
1 2 3 ⊥ Zd, Zs

p ,W , 
(Wright’s M)

s
 

Y  
 = β1p +    

p β2
/Zs + β s s d s

3
/W + E , E ⊥ Z ,Z , W. 

Potential price is denoted by p, and potential quantities demanded and supplied at price 
p are denoted by Y d 

p and Y s 
p respectively. Thus, the curve p  → Y d 

p is a random aggregate 
demand curve, and p  → Y s 

p is a random aggregate supply curve. Each curve is shifted by 
observable and unobservable variables: elements of W are common shifters (that include 
a constant), variables in Zd shift demand only, and variables in Zs shift only the supply. 
The shocks Ed and Es capture all the unobservable shifters of demand and supply curves, 
and are assumed to be orthogonal to all observable shifters. 

We can also think of (Wright’s M) as of a collection of pairs of regression equations 
indexed by p: 

 d −   / d  /   d d Yp α1p = α2Z + α3W + E , E ⊥ Zd, Zs,W 

Y s 
p − 1p = 2

/Zs β + β3
/W +  E , Es β s ⊥ Zd, Zs, W, 

which clarifies the role of the observables in explaining parts of the fluctuations of the 
supply and demand curves. Here the decision of which W ’s and  Zd and Zs to include in 
the regression specification is similar to specification analysis we employ the regression. 
It is critical to find useful demand and supply shifters, which often involves creativity and 
good data collection (for example, the supply of fish is affected by weather conditions at 
sea, and so you’d need to collect that data if you want to estimate the demand for fish). 
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The maps p  → α1p and p  → β1p describe the deterministic parts of the random dem
and supply functions. This part is structural and the specification here corresponds to

and 
 the 

Cobb-Douglas form (since we are working in logs); we could entertain other structural 
specifications as well. 

The structural equations in (Wright’s M) determine the equilibrium (log) quantity and 
(log) price (Y, P ) determined via the market clearing condition: 

Y s = Y d =: Y. P P 

Note that in the treatment effects framework, commonly used in data analysis, Y s and Y d 
p p

are called the potential outcomes indexed by p, and the observed outcome Y is obtained 
after plugging the observed index p = P , namely Y = Y s = Y d. Inserting the equilibrium P P 
quantities (Y, P ) in the original equations we obtain the following SEM: 

Y − α1P − α/
2Z

d − α3
/ W = Ed , Ed ⊥ Zd, Zs,W , 

(Wright) 
Y − β1P − β2

/Zs − β3
/W = Es , Es ⊥ Zd, Zs, W. 

It should be clear from Figure 1 that we can not hope to identify the structural elasticity 
parameters α1 and β1 from the projection coefficients of Y on P or of P on Y , as equilibrium 
quantities won’t necessarily trace either demand or supply curve. On the other hand, as 
illustrated in Figure 2, if we have supply shifters that move the supply curve, without 
affecting the demand curve, then we conclude that the data contain some quasi-experimental 
fluctuations that can be used to trace out the demand curve and thus identify the demand 
elasticity α1. We can make a similar observation regarding the demand shifters helping 
us identify the supply elasticity β1. We proceed to identify and estimate these and other 
parameters systematically. 

In what follows, we could take the indirect least squares approach we used previously: 
namely, we could solve for (Y, P ) in terms of exogenous variables and shocks, creating 
a reduced form and could take the indirect least squares approach to identification and 
estimation of structural parameters, where we first estimate the reduced form parameters 
by least squares method, then back out the structural parameters from the reduced form 
parameters. This is an excellent approach to take, but since we had already done it for 
a closely related model, we take the opportunity to pursue another approach which will 
take us directly to the GMM. 

The crux of the method lies in the realization that the following moment conditions hold 
as the result of the assumed orthogonality conditions in (Wright) : 

E(Y − α1P − α2
/ Zd − α3

/ W )(Zs/, Zd/,W /)/ = 0, 
(1.1) 

E(Y − β1P − β2
/Zs − β3

/W )(Zs/, Zd/,W /)/ = 0. 
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Figure 1. Here we see three different realizations of random supply and 
demand curves. The equilibrium prices (Y, P ) determined by the points of 
intersection of pairs curves p  → Y sp (ω) and p  → Y dp (ω) at a given point in  
time or in a given market.  

This is a system of deterministic equations, where the number of unknown parameter 
values is smaller than or equal to the number of equations, so there is some hope that the 
system identifies these parameter values. Therefore we can set-up an empirical analog of 
these equations and solve the resulting empirical equations, at least approximately, to get 
a good estimator of the parameter values. 

In order to develop the approach systematically, we need to set-up some notation. Let 

θ0 := (α/, β/)/ := (α1, α
/
2, α3

/ , β1, β2
/ , β3

/ )/, 

denote the true value of our parameter vector that satisfies (1.1), and let 
/ /θ := (a/, b/)/ = (a1, a2, a3, b1, b2

/ , b/3)
/, 

denote the potential other values it could take in the parameter space Θ. Define random 
vectors 

D1 := (P, Zd/,W /)/, D2 := (P, Zs/,W /)/, 
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Figure 2. Here we observe realizations driven by changes in the observed 
supply shifters, which shift the supply curve but not the demand curve. 
The equilibrium prices (Y, P ) are determined by points of the intersection 

s
pof pairs curves p  → Y 

allow us to trace out the demand curve.  
d
pand p  → Y . Here changes in the supply shifters  

and let 

X := (Y, P, Z /)/, Z := (Zd/, Zs/,W /)/, 

be a vector of observables and a vector of technical instruments. 

Define the “score” function:    
g1(X, a) (Y − D1

/ a)Z 
g(X, θ) := :=

g2(X, b) (Y − D2
/ b)Z

We thus have the moment condition:   
Eg1(X, α)

Eg(X, θ0) = = 0. 
Eg2(X, β)

 
. 
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Figure 3. Graph-theoretic representation of Wright’s model after par­
tialling out the effect of W . Random vectors are given as nodes or vertices of 
the graph. Observed nodes are shaded and latent nodes are not. Directed 
edges represent causal channels. The absence of links between latent nodes 
signifies the lack of correlation among nodes: the instrument shocks E ̃Zs 

and EZ̃d are uncorrelated with structural errors Es and Ed. 

This neat system of moment equations is equivalent to (1.1). The true parameter value 
θ0 = (α/, β/)/ is identified by these linear equations if the following matrix 

∂ G1 0 EZD1
/ 0 

G := E g(X, θ) =: = 
∂θ/ 0 G2 0 EZD/

2 

is full rank. The technical full rank condition on EZD/ and EZD/ in turn entails the re­1 2 
quirement that the excluded variables Zd and Zs have predictive power for the endoge­
nous variable P (and hence also Y ). This generalizes the previous identification condition 
in L2 of there being a non-trivial “first stage”. 

We use the empirical analog of this moment condition to set-up estimation. What fol­
lows below is no longer specific to our working example and so we begin a new section. 

2. GMM 

We describe a general framework here. The first building block is the following assump­
tion. 

We have a random vector X and a score function g(X, θ) that is a vector-valued 
function of X and parameter vector θ. For the moment function 

g(θ) := Eg(X, θ), 
we assume that the true parameter value θ0 ∈ Θ ⊂ Rd satisfies: 

g(θ0) = 0. 

[ ] [ ]
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This was the case in Wright’s model for an appropriately chosen score function g(X, θ), 
based on instrumental variables. As in Wright’s model, we should always make sure 
that the true parameter value that we want to identify and estimate satisfies the condi­
tion above. For this it is important to choose the score functions appropriately. 

Note that g maps Θ ⊆ Rd to Rm, where d = dim(θ) ≤ m. Econometricians say that the 
system of equations is 

• “exactly identified” if d = m, 
• “over identified” if d < m, 
• “under identified” if d > m. 

This is a conventional terminology, so we need to know it in order to understand our 
colleagues, although this terminology seems to be misleading to suggest that just having 
enough equations is sufficient to identify the true parameter value. Perhaps, it would be 
better to call the first case “exactly determined”, the second “overdetermined”, and the 
third “underdetermined”. In the last case we can not hope to identify θ0 but we might still 
be able to “set-identify” θ0 to lie in the identified set Θ0 which is a strict subset of Θ. We 
don’t study this case in this course. 

We have data {Xi}n , which are identical copies of X , and, as a leading case we i=1
assume that they are also independent (i.i.d.). We form the empirical moment function: 

ĝ(θ) = Eng(X, θ). 

Then our estimator θ̂ of θ0 is 
θ̂ ∈ arg min ĝ(θ)/Âĝ(θ), (GMM) 

θ∈Θ 

where Â is a positive-definite matrix, possibly data-dependent, that converges to a 
non-stochastic positive-definite matrix A, that is Â →P A. 

Thus, the estimator θ̂ sets ĝ(θ) close to zero with respect to the quadratic discrepancy 
function. In “over-identified” systems it is generally not possible to set ĝ(θ) exactly to zero. 
The choice of quadratic discrepancy to measure deviations from zero, is both convenient 
and good, since it does deliver an optimal way to combine moments, with an appropri­
ately chosen A. We note that there are other, asymptotically equivalent ways of combining 
moments: for instance, the methods called generalized empirical likelihood and contin­
uous updating estimators are first-order equivalent to the GMM estimator, and they also 
have some refined properties in some circumstances. 
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An important practical and theoretical matter is the choice of the weighting matrix A. 
It makes sense to choose A in a way that gives more weight to precisely estimated mo­
ments and less weight to imprecisely estimated moments, while also taking into account 
the correlation of the moments. 

The optimal weighting matrix A for GMM takes the form 

A = Ω−1 , Ω := Var( 
√ 
nĝ(θ0)), 

where in the case of i.i.d. data, 
Ω = Var g(X, θ0) = Eg(X, θ0)g(X, θ0)/. 

We will establish below the precise sense in which A = Ω−1 is optimal. Note that Ω is 
unknown. For this reason, we often use the following algorithm to compute the GMM. 

1. Set Â = ˆ Ω = I (or some other reasonable initialization) and obtain ˆΩ−1, for ˆ θ. 

2. Set Â = ˆ Ω = v √ 
nˆ ˆ, and obtain ˆΩ−1, for ˆ Var( g(θ))| θ.θ=θ

3. Repeat the previous step several times. 

In step 1, we could use other reasonable initializations, for example, given a parameter √vguess θ̄ we could use Ω̂ = Var( nĝ(θ))|θ=¯ instead, and this would arguably be a more θ 
clever choice in some cases. In step 2, we need to specify a variance estimator: under i.i.d. 
sampling we can use the variance estimator 

vVar( √ 
nĝ(θ)) = Eng(Xi, θ)g(Xi, θ)

/. 

For dependent data, we can use the Newey-West variance estimator. Two steps are suffi­
cient to reach the full efficiency, although an additional step might be desirable to use a 
more efficient estimator of the variance in an effort to improve the finite-sample properties 
of the estimator. 

3. A Helicopter Tour of GMM Properties 

In order for GMM estimator to be consistent for the true parameter values, these values 
need to be identifiable in the population (that is when infinite amount of data is available). 
The assumption of identifiability is the following. 
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We assume that the identification condition holds: g(θ) = 0 if and only if θ = θ0. 

This is a non-trivial assumption to impose and it will take us some time to understand 
what makes this assumption hold. We begin to build our understanding with the discus­
sion given below. 

We consider the following Jacobian matrix that plays an important role: 

∂ 
G = g(θ0). 

∂θ/ 

We assume that the Jacobian matrix G has full column rank.  

It turns out that in the linear models, where θ  → g(θ) is linear, the full rank assumption 
on G is equivalent to the identification condition. In non-linear models, this assumption 
is not equivalent to the identification condition. The latter point is quite delicate, so we 
postpone a detailed discussion of this point to L4. In linear IV models, like Wright’s model, 
this assumption translates into instruments having a predictive power over endogenous 
variables. If instruments have no predictive power, then the full rank assumption fails, 
and θ0 is no longer identified. This assumption makes intuitive sense since instruments 
must create quasi-experimental fluctuations in the endogenous variables in order for us to 
identify the structural parameters. 

By way of preview, we would like to note that the GMM estimator is root-n consistent 
and asymptotically normal under a set of plausible conditions that we shall develop in 
what follows. Just like in L2 we need to distinguish strongly and weakly identified cases. 

We say that we have a strongly identified case if the smallest eigenvalue of G/AG is 
bounded away from zero. Otherwise, we say that we have a weakly identified case. 

In the context of linear models, like Wright’s, we can use the F-statistics as diagnostics 
for weak identification, as discussed in Lecture 2. In general GMM formulation a simple 
diagnostic of this type has been developed by [2]. We briefly discuss inference under weak 
identification in GMM in the next lecture. 

Assertion 1 (General Properties of GMM under Strong Identification). Suppose that 
g(θ) = 0 for θ ∈ Θ if and only if θ = θ0. Under strong identification and other plausible 
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regularity conditions, 
a√ 

n(θ̂ − θ0) ∼ (G/AG)−1G/AE, E ∼ N(0, Ω) 
where 

(G/AG)−1G/AE ∼ N(0, VA), 
where 

VA := (G/AG)−1G/AΩAG(G/AG)−1 . 
If A = Ω−1, then 

VA = VΩ−1 = (G/Ω−1G)−1 . 

In order to make the best use of this result and understand it better, let us make several 
remarks. 

First, we note that if m = d, that is, in the “exactly identified” case, the weighting matrix 
vanishes from the variance formula: 

VA = G−1Ω(G/)−1 . 

Thus the choice of A is irrelevant in exactly identified cases, which makes a lot of sense, 
since in this case we solve each equation by equation and it is unimportant how we weigh 
them together. 

If m > d, that is, in the “over-identified” case, the weighting matrix does matter and 
does not vanish from the formula. In particular, as noted above, using weighting matrix 
Ω−1 simplifies the variance matrix dramatically. 

Moreover, Ω−1 is the optimal weighting matrix for GMM in the sense that 
VA ≥ VΩ−1 

for all A ≥ 0, where the inequality means that VA − VΩ−1 ≥ 0, i.e. positive definite. In 
words, the optimally weighted GMM has smaller variance matrix asymptotically than 
a suboptimally weighted GMM. 

The claim is immediate from the following observation, which can be verified by a sim­
ple calculation: 

0 ≤ Var((G/AG)−1G/AE − (G/Ω−1G)−1G/Ω−1E) = VA − VΩ−1 , (3.1) 

Second, above we assert the following asymptotic representation of the GMM: 
a√ 

n(θ̂ − θ0) ∼ (G/AG)−1G/AE, 
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where E ∼ N(0, Ω) is the asymptotic sampling error, corresponding to 

√
nĝ(θ0). This is a 

very convenient observation because it connects us to the least squares analysis: We can 
view GMM in large samples as a weighted least squares estimator 

θ̃ = arg min (U − Gθ)/A(U − Gθ), 
θ∈Rd 

in a “limit experiment”, where we observe 
√ 

U = Gθ0 + E/ n, E ∼ N(0, Ω), 

and we try to learn θ0. For this experiment, the weighted least squares estimator can be 
represented as 

√ 
n(θ̃ − θ0) = (G/AG)−1G/AE, 

and the optimal weighted least squares (generalized least squares) estimator is the one that 
uses A = Ω−1. We know that from the Gauss-Markov theorem that the generalized least 
squares is optimal. In fact, (3.1) is a quick re-proof of this theorem. Note that the calcu­
lation (3.1) also shows that the difference of the variances of the suboptimal and optimal 
estimators is equal to the variance of the difference of the two estimators. 

We can also think of the creating optimal linear combination of moments ḡ(X, θ) = 
L/g(X, θ), where L is such that the GMM estimator based on ḡ(X, θ) has the small­
est asymptotic variance. Using previous calculations, we can deduce that the optimal 
linear combination of moments is given by 

L = GΩ−1 . 

4. Asymptotic Properties of Linear GMM 

The linear case refers to the case where 

θ  → g(X, θ) 

is an affine map with respect to θ. This means, in particular, that we can write 

g(X, θ) = g(X, 0) + G(X)(θ − 0). 

For example, the Wright’s model has a score function that is affine in this sense. 

In the affine case we have that 
∂ 

G = Eg(X, θ) = EG(X). 
∂θ/ 
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The GMM estimator has the closed form solution in the linear case. For 
Ĝ = EnG(X), ĝ(0) = Eng(X, 0), 

we have that 
θ̂ = −(Ĝ/ÂĜ)−1Ĝ/Âĝ(0), (4.1) 

provided the pre-factor is invertible. 

This claim follows by solving the first-order conditions for the (GMM) problem: 

0 = Ĝ/Âĝ(θ̂) = Ĝ/Â(ĝ(0) + Ĝθ̂). 

The linear case is great because it is analytically tractable and allows us to derive the 
following formal result. 

Theorem 1. Consider the linear GMM problem where dimensions d and m are fixed, and 
assume that we have Â →P A > 0. Suppose that the law of large numbers holds, namely 
Ĝ →P G, where G is of full column rank. Suppose also that the central limit theorem holds, 

√ a
nĝ(θ0) ∼ N(0, Ω). 

Here G, A, and Ω are assumed not to depend on n. Then all the conclusions of Assertion 1 
hold. When (Xi)

∞ are i.i.d. copies of X , where X does not depend on n, it suffices to have i=1 
EIG(X)I < ∞ for the law of large numbers and EIg(X, θ0)I2 < ∞ for the central limit 
theorem. 

Proof. We set-up the first order condition for the GMM problem 

0 = Ĝ/Âĝ(θ̂). 

Since ĝ(θ̂) = ĝ(θ0) + Ĝ(θ̂ − θ0) by linearity 

0 = Ĝ/Â[ĝ(θ0) + Ĝ(θ̂ − θ0)]. 
As explained below, we can solve these equations for the deviation of the estimator from 
the estimand: √ 

n(θ̂ − θ0) = −(Ĝ/ÂĜ)−1Ĝ/Â
√ 
nĝ(θ0). (4.2) 

Then we notice that by the assumed law of large numbers and the central limit theorem 
and the continuous mapping theorem that 

a−(Ĝ/ÂĜ)−1Ĝ/Â
√ 
nĝ(θ0) ∼ −(G/AG)−1G/AN(0, Ω). (4.3) 

In what follows we explain some details. We have by the full rank assumption and by 
A > 0 that G/AG > 0, so that inverse of G/AG exists. We have by the continuous mapping 
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theorem and the law of large numbers 

ˆ ˆG P G, A P A, Ĝ/Â P G
/A, ˆ ˆ ˆ   (G/AG)−1

P (G
/AG)−1. → → → →

Thus (Ĝ/ÂĜ)−1 exists with probability converging to 1, which is what enabled us to solve √ afor the deviation in (4.2). The convergence results were combined with nĝ(θ0) ∼ N(0, Ω) 
to arrive at the conclusion (4.3) by the continuous mapping theorem. _ 

5. Back to Wright’s System of Equations, 2SLS and 3SLS as GMM 

We now can see that we can estimate Wright’s model by using the score function we 
have specified in Section 1. In principle we could stop here, but it is very interesting to 
explore the details of the linear GMM for this model. 

In fact Wright’s model provides a very interesting framework in which we can take sev­
eral routes to estimation. Recall that in L2 we had exact identification and all estimation 
routes discussed led to the same estimator, which we called the IV estimator. In Wright’s 
model, we have over-identification in general, and the set of IV estimators we could con­
sider is quite rich. We can consider all of them as special cases of GMM. 

We consider two broad approaches to estimation: 

•	 limited-information or equation-by-equation approach, where we treat estimation of 
α and β separately, based on each block of equations; we can view this approach 
artificially as a joint estimation with a block-diagonal weighting matrix; 

•	 full-information or systems approach, where we treat estimation of α and β jointly, 
employing (jointly) optimal weighting matrices. 

It turns out that both approaches could be treated as part of the general GMM approach, 
although the second approach is generally more efficient (if the regularity conditions hold 
for the joint estimation problem). In what follows we explain the features of the two ap­
proaches in details. This material can and should be skipped on the first reading. 

•	 We assume i.i.d. sampling in what follows. 

5.1. Limited Information or Equation-by-Equation Approach. Here we estimate α and 
β separately, similarly to what we have done in L2. The “separate” estimation of α and β 
can be carried out by formulating a GMM estimator for each of the two sets of equations: 

Eg1(X, α) = 0, Eg2(X, β) = 0. 
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Consider the first set of equation first. Here 
∂

g1(X, a) = (Y − D1
/ a)Z, G1(X) = g1(X, a) = −ZD1

/ ,
∂a/ 

so that this gives us the following quantities: 
ˆĝ1(a) = En(Yi − D1

/
ia)Zi, ĝ1(0) = EnYiZi, G1 = EnG1(Xi) = −EnZiD1

/
i. 

Given a weighting matrix Â1 →P A1 the explicit solution for the limited-information 
GMM estimator of α is given by 

ˆ ˆ ˆ ˆα 1 ˆˆLI = −(G/
1A1G1)

− G/
1A1ĝ1(0). 

The optimal weighting matrix (in the limited-information sense) and its estimator are 

A1 = (Eg1(X, α)g1(X, α)/)−1 ˆ, A1 = (Eng1(X, α̃)g1(X,  α̃)/)−1, 

where α̃ is some preliminary estimator. It is also important to mention the following 
(canonical) choice of the weighting matrix and its estimator: 

Ac 
1 1 n

It turns out that under this choice the estimator α̂ becomes the (canonical) two stage 
least squares estimator (2SLS): 

α̂ 1 1 1
2SLS = (EnD1iZ

/(EnZZ
/)− EnZD1

/
i)
− EnD1iZi

/(EnZZ
/)− EnYZ. 

Under overidentification 2SLS is not optimal in general compared to the estimator α̂ that 
uses optimal weighting matrices.1 Note however that 2SLS could be used as a preliminary 
estimator α̃ in the computation of the optimal estimator. In linear IV models, like Wright’s 
model, we can call the optimal estimator α̂LI the limited information three stage least squares 
(3SLS) estimator. The properties of α̂LI and α̂2SLS follow from the general properties of 
GMM summarized in Assertion 1. 

All of the above also works to define the limited information estimator for β. Here 
∂

g2(X, b) = (Y − D2
/ b)Z, G2(X) = g2(X, b) = −ZD ∂ 2

/ ,
b/

so that this gives us the following quantities: 

ĝ2(b) = En(Y − D2
/
ib)Z, ĝ2(0) = EnYZ, Ĝ2 = EnG2(X) = −EnZD2

/
i. 

1It has some limited-information optimality under homoscedasticity of the structural errors, which we 
don’t use in this course, because such assumptions seem practically irrelevant. 

 =  ˆ   (EZZ /)−1, Ac
 = (E ZZ /)−1. 
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Given the weighting matrix Â2 →P A2 the explicit solution for GMM is given by 
ˆ ˆ ˆ ˆ ˆ ˆβ 1
LI = (G/

2A2G2)
− G/

2A2ĝ2(0). −
The optimal weighting matrix (in limited-information sense) is 

A2 = (Eg2(X, β)g2(X, β)/)−1 , Â2 = (Eng2(X, β̃)g2(X, β̃)/)−1 , 

where β̃ is a preliminary estimator of β. The canonical choice of the weighting matrix 
and its estimators are Ac = (EZZ /)−1 and Âc = (EnZZ

/)−1 , using which the estimator 2 2 
becomes the (canonical) 2SLS. The properties of β̂LI follow from the general properties of 
GMM summarized in Assertion 1. 

It turns out that the joint properties of α̂LI and β̂LI could be obtained by stacking the 
two estimation problems into common GMM estimation problem with 

g(X, θ) = [g1(X, a)/, g2(X, b)/]/, ĝ(θ) = Eng(X, θ), 

and 
ˆ ˆĝ1(0) G1 0 A1 0ˆ ˆĝ(0) = , G = , A = , 

ĝ2(0) 0 Ĝ2 0 Â2 

where the block-diagonal weighting matrix mimics the “separation” of the two problems. 
Then 

ˆ = −(Ĝ/ÂĜ)−1Ĝ/Âĝ(0) = [α̂/ β̂/ .θLI LI , LI ]
/

The properties of this estimator, in particular the joint variance matrix, then follow from 
the general properties of GMM given in Assertion 1. 

5.2. Full-Information or Systems Approach. Here we start out in the same way as in the 
last paragraph: We have 

g(X, θ) = [g1(X, a)/, g2(X, b)/]/, ĝ(θ) = Eng(X, θ), 

so that, as before, 
ˆĝ1(0) G1 0ˆĝ(0) = , G = 

ĝ2(0) 0 Ĝ2 

but instead of using block-diagonal weighting matrices, we employ the optimal weighting 
matrix and its estimator: 

A = (Eg(X, θ0)g(X, θ0)/)−1 , Â = (Eng(X, θ̃)g(X, θ̃)/])−1 , 

where θ̃ is a preliminary estimator of θ0, for example, we could use the limited-information 
estimators. 

Then the full-information GMM estimator is given by 
ˆ α/ β̂/ G/ÂĜ)−1Ĝ/ ˆθFI = [ˆFI , FI ]

/ = −( ˆ Aĝ(0). 

[ ] [ ] [ ]

[ ] [ ]



L3 15 

The properties of this estimator then follow from the general properties of GMM sum­
marized in Assertion 1. 

In linear IV systems like Wright’s model, we can call the optimal GMM estimator the 
full-information or system three-stage least squares (3SLS), reflecting the fact that we are 
aggregating information from the entire system of equations. In general, in over-identified 
problems, A does not reduce to the block-diagonal structure in the previous subsection, 
and so by the GMM efficiency theory, the full information approach is generally more 
efficient than the limited information approach. 

At the same time, the full-information approach is less robust than the limited infor­
mation approach. For example, if we mess up estimation of first block of equations, for 
example, due to weak identification or misspecification, we generally end up messing up 
estimation in second block of equations. Some of these problems can be avoided using the 
limited information approach on the second block of equations. This is one of the main 
reason why limited information approach is more frequently used in empirical work. 

To summarize, the full information or systems approach is more efficient than the 
limited information or equation approach; at the same time the latter is more robust 
to departure from strong identification and misspecification. 

6. Demand and Supply of Whiting Fish in Fulton Market 

We illustrate the estimation and inference of systems of simultaneous equations through 
a demand and supply empirical application. We construct an artificial data set calibrated 
to the data set of [1] on demand and supply of whiting fish in the Fulton Fish Market.2 This 
is simulated data which we can term bit-data and refer to the commodity in this data as 
bit-fish. The data include 1,554 daily observations on the log of quantity sold of whiting 
fish in pounds as Y ; the log of the average price in dollars per pound as p; two indicators 
of the weather conditions on shore (cold and rainy) and four day-of-the-week indicators 
(day1–day4) as the demand shifters Zd; and two indicators of the conditions of the sea 
(stormy and mixed) as the supply shifters Zs. Note that the system is overidentified with 
a total of m = 18 moment conditions for d = 12 parameters. We deem the shifters as strong 
instruments because the first stage F -statistics are 148.44 for the demand and 19.62 for the 
supply. 

Table 1 reports limited and full information estimates of the demand and supply elas­
ticities α1 and β1, together with 95% confidence intervals. In this data set where the error 

2We artificially increase the sample size by a factor of 14 because the demand shifters are very weak in the 
original data set with only 111 observations. 
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Table 1. Demand and Supply of Whiting Bit-Fish  

Demand Elasticity Supply Elasticity 

Estimate Altern. Name Estimate Std. Error Estimate Std. Error 

OLS – -0.50 0.05 -0.32 0.05 
LI-GMM (1 step) “LI-2SLS” -0.92 0.12 0.94 0.22 
LI-GMM (2 step) “LI-3SLS” -0.93 0.12 0.86 0.22 
FI-GMM( 2 step) “FI-3SLS” -0.93 0.11 0.91 0.21 

terms are homoskedastic by construction, there is no efficiency gain of doing 2 step over 
1 step in limited information estimation. The full information estimator, however, is more 
precise than the limited information estimators because of the over identification and the 
correlation between the supply and demand shocks. 

Notes 

The foundational work of Wright, who was an economist, is quintessential to economet­
rics – please see a nice article by J. Stock on Wright’s work. 

Appendix A. Problems 

(1) Consider the regression model Y = X /θ0 + E, E ⊥ X . Analyze estimation of the 
regression parameter θ0 from the GMM point of view: write the score function, 
write the GMM estimator, write its asymptotic distribution. Compare your results 
to the standard results on OLS estimator of θ0. 

(2) Work through the proof of Theorem 1 several times. Write down the proof by mem­
ory, without looking at the notes. 

(3) Prove the equality in equation (3.1). State in words what you have proved. 

(4) Write down the details of optimal weighting matrix estimation in implementation 
of GMM for the case of i.i.d. data. How would you adjust it if the data were a time 
series? 
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(5) Replicate estimation results for the simulated Fulton fish market data, which is 
provided. Explain limited information GMM estimators as well as full informa­
tion GMM. 

(6) Provide estimation results for the real Fulton fish market data, which is provided. 
Explain limited information GMM estimators as well as full information GMM. 
Notice that this application has weak instruments, so the inferential results drawn 
using strong-instrument asymptotics is not reliable. You can try Anderson-Rubin 
approach for inference and see what you get. 
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