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Abstract. Here we study a very important linear structural model, with a single endoge­
nous variable and a single instrument, which is frequently used in empirical analysis in 
economics. We show that we can identify, estimate, and perform inference on the struc­
tural parameters of the model using the indirect least squares method. We also provide 
inferential methods that are robust to weak instruments. The theory relies only upon con­
ventional results for the least squares method. We apply the tools to revisit the analysis of 
returns-to-schooling and the impact of quality of institutions on economic growth. In the 
latter case, the use of inference methods robust to weak identification leads to sharper lower 
bound on the impact of institutions quality than the original empirical results. 

Notation 

Here we use the notation ⊥ to denote that two random vectors V and W obey 

EVW ' = 0. 

In particular, if W includes a constant, this means that V and W are not correlated. The 
notations V ⊥S W means orthogonality in the sample, namely 

EnVW ' = 0. 

In particular, if W includes a constant, this means that V and W are not correlated in the 
sample. 

1. Structural Equations Models 

Structural equations models (SEM) specify a collection of functional relations, moti­
vated by economic reasoning, plus shock terms that obey certain orthogonality condi­
tions. 

This is an important concept that defines econometrics as a field that is distinct from 
statistics. Another name for SEMs, frequently used in econometrics, is the simultaneous 
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equations models. A leading working case, encountered in many modern empirical anal­
yses, is the following linear system of equations: 

' ) ' Y = α1D + α ' 2W + U, U ⊥ (W ' , Z , 
(IVM) 

D = β1Z + β2
' W + V, V ⊥ (W ' , Z ' ) ' , 

where W includes a constant. 

We can supply the context to these equations via the Angrist-Krueger analysis of returns­
to-schooling: Y is log of wage, D is years of education, W is a set of controls (geographic 
indicators, year of birth, race, and marital status), V is an education shock, U is a wage 
shock, and Z is a quarter-of-birth indicator (for whether a person was born in the fourth 
quarter of the year). The role of Z is unclear at this point, but we will clarify it later. The 
goal is to learn the parameter α1, which we interpret as a return-to-schooling parameter. 
The parameter measures how education influences wages. We shall call such parameters 
causal or structural. 

We can think of the outcomes (Y, D) as generated in two steps of a Nature’s game: 

1. Random variables W, Z, V, U are generated subject to the orthogonality condi­
tions specified above. 

2. The random variables Y and D are jointly determined by the system (IVM). 

Accordingly, we call observed variables W and Z the predetermined or exogenous vari­
ables, and we call Y and D as jointly determined or endogenous variables. We call the unob­
served variables U and V as stochastic shocks or error terms. We call Z the instrumental 
variable or excluded exogenous variable, since it is excluded from one of the equations. 

There is a good reason to think that the wage and education shocks U and V are corre­
lated, since, for example, unobserved innate ability could be positively influencing wages 
and positively influencing the level of educational attainment at the same time. Thus it is 
reasonable to believe that 

EUV  = 0. 

This makes the education variable D correlated to U , which in turn implies that we can’t 
identify α1 as the coefficient of D in the orthogonal projection (i.e. regression) of Y on D 
and W . Let’s analyze this systematically and see if we can still identify α1 somehow. 

In order to focus on the target parameter better, we can get rid of some nuisance param­
eters first. We do so by partialing out the effect of W , as defined in L1. Application of the 
partialling out operator to both sides of each of the equations in (IVM) gives us a much 
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simpler system of equations: 

˜ ˜ U ⊥ ˜Y = α1D + U, Z, (1.1)˜ ˜ V ⊥ ˜D = β1Z + V, Z. 

Recall that the partialling-out operator is linear, and therefore combines well with orthog­
onality properties. In particular, the orthogonality conditions of (IVM) still hold in (1.1) 
after we apply tildes to all variables. The simplicity of the final equations illustrates the 
beauty of the partialling-out trick: The model we started with is a fully practical (non-toy) 
model, but after partialling-out, it really becomes a toy model. We can therefore gain some 
useful insights, which are also fully practical. See also Figure 1 for a graph-theoretic de­
piction of the model. In modern analysis of SEMs graphs are often used to communicate 
visually the structure of the equations (albeit it is not clear whether graphs have to offer 
more than merely an artistic appeal). 

Ỹ U 

D̃Z̃ V0Z̃ 

Figure 1. Graph-theoretic representation of the IVM: Ỹ = α1D̃ + U, D̃ = 
β1Z̃ + V , Z̃ = 0 ̃ , after partialling out the effect of W . Random variables Z 
( ˜ D, ˜ , U, V ) are given as nodes or vertices of the graph. Observed Y , ˜ Z, 0 ̃Z 
nodes are shaded and latent nodes are not. Directed edges represent causal 
channels. The absence of links between latent nodes signifies the lack of 
correlation among nodes: 0 ̃ is uncorrelated with U and V .Z 

We begin the analysis with an important negative result, namely that we can’t iden­
tify α1 as a projection coefficient of Ỹ on D̃. 

Indeed, the projection coefficient is given by: 

δ1 = (E D̃2)−1ED̃Ỹ = (ED̃2)−1ED̃(α1D̃ + U) 
= α1 + (E D̃2)−1E(β1Z̃ + V )U 
= α1 + (E D̃2)−1EV U 
= α1 if EV U = 0. 

Thus, unless EV U = 0, the target parameter α1 can not be identified from the projection 
coefficient δ1. This means we can’t use direct least squares to identify and estimate α1. 

6 6



 

 

4 VICTOR CHERNOZHUKOV AND IV AN´  FERNANDEZ- ´ VAL 

So what can we do instead? We now remember that Z creates some fluctuations in D 
that are uncorrelated to U . We can think of them as exogenous or quasi-experimental fluc­
tuations. In the AK example, Z is an instrumental variable that is related to compulsory 
schooling laws: being born in the last quarter, Z = 1, forces some students to stay in high-
school longer, leading them to acquire more years of schooling; at the same time whether 
Z = 1 or 0 does not seem to affect the wage schedules. Hence, it is reasonable to think 
that Z appears in the second equation but not in the first equation. In short, there must be 
some information about α1 in this set-up. Let’s see if we can identify α1 using somehow 
this information. 

2. Indirect Least Squares and Wright’s IV Method 

2.1. Identification. Here the main insight is to solve for (Y , ˜ D̃) in terms of Z̃: 
˜ ˜ ˜ ε ⊥ ˜Y = α1β1 Z + α1V + U =: γ1Z + ε, Z, 

=:γ1 =:ε (2.1) 
˜ ˜ V ⊥ ˜D = β1Z + V, Z. 

This is the so called reduced form: This is a system of linear equations, where only exogenous 
variables appear on the right side and where the shocks are orthogonal to these variables. 
Hence the parameters γ1 and β1 are simply the regression coefficients: γ1 is the regression 
coefficient in the regression of Ỹ on Z̃, 

γ1 = (E Z̃2)−1EZ̃Ỹ , 

and β1 is the regression coefficient in the regression of D̃ on Z̃, 

Z2)−1EZ̃ ˜β1 = (E ̃ D. 

Of course, we are talking about population regressions, and we use regression as a syn­
onym for linear projection. We now see a remarkable fact. 

Theorem 1 (Identification of α1 using instrumental variables). In the IVM model, we can 
identify the structural parameter α1 as a ratio of two projection coefficients: 

γ1 (EZ̃2)−1EZ̃Ỹ EZ̃Ỹ
α1 = = = , if β1 = 0. 

β1 (EZ̃2)−1EZ̃D̃ EZ̃D̃

Thus if β1 = 0, that is, if “there is a first stage”, meaning that Z̃ indeed predicts D̃, then 
α1 is identified. Sometimes this method is also called the indirect least squares method for 
identification of α1. It also leads to an obvious estimation and inference strategy, which 
we elaborate below. Interestingly, the very last bit of the formula above is the Wright’s 
instrumental variable (IV) method for identification of α1 [8] introduced in 1928. The last bit 
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of the formula is sometime also called Wald’s IV formula, which was re-introduced later in 
1944, in a different context. 

Finally, note also that we can recover α1 as a regression coefficient in the linear projection 
of γ1Z̃, the predicted value of Ỹ , on β1Z̃, the predicted value of D̃: 

γ1˜ ˜ ˜α1 = (E(β1Z)2)−1E(γ1Zβ1Z) = . 
β1 

This is the so-called two-stage least squares method for identification of α1. We shall not 
emphasize this method too much, since it does not extend easily to nonlinear models. 

2.2. Estimation and Inference. For estimation purposes we assume that we have a sample 
{(Yi, Di, Zi,Wi)}n of identical copies of (Y, D, Z, W ). We assume also that the copies i=1 
are independent, although the principles outlined below apply more generally to weakly 
dependent or clustered data. 

The above suggests that we can use the following analog estimator for α1: 

γ̂1
α̂1 := . 

β̂1 

This is the instrumental variables (IV) estimator of α1. Here we take the least squares estima­
tors γ̂1 and β̂1: 

γ̂1 = (En ˇ Z ̌Z2)−1En ˇY, 

β̂1 = (EnŽ
2)−1EnŽĎ. 

Recall that “checks” denote the quantities after partialling out the linear effect of W in the 
sample. 

Thus α̂1 is a smooth transformation of the least squares estimators and so its consistency 
and large sample properties follow directly from the properties of the least squares estima­
tors via continuous mapping theorem and the delta method respectively. Let θ = (γ1, β1) ' , 
θ̂ = (γ̂1, β̂1) ' , f(θ) = γ1/β1, then α̂1 = f(θ̂). Let \f(θ) = ∂f(θ)/∂θ = (1/β1, −γ1/β1

2) ' 
provided that β1 = 0. Then under general conditions the least squares estimators jointly 
obey 

a
θ̂ ∼ N(θ, Vθ/n), 

and there is a consistent estimator V̂θ of Vθ available (e.g. White’s estimator for i.i.d. data, 
Newey-West for time series data, etc.). 

6=
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By a mean-value expansion, for some θ̄ on the line connecting θ̂ and θ:  
√ 
n(α̂1 − α) = \f(θ̄) '

√ 
n(θ̂ − θ)  

= [\f(θ) + oP (1)] '
√ 
n(θ̂ − θ)  

a∼ \f(θ) ' N(0, Vθ)  
= N(0, Vα1 ), Vα1 = \f(θ) ' Vθ\f(θ),  

where we have used the continuous mapping theorem in the second and third step. We 
then can estimate the asymptotic variance by: 

V̂α1 = \f(θ̂) ' V̂θ\f(θ̂). 

Using this approach we can proceed to construct standard confidence intervals. However, 
the delta method works poorly when β1 ≈ 0, when the first stage is weak. 

It is also possible to work out the asymptotic distribution of the IV estimator more di­
rectly. Note that 

Z ˇ Z ̌

In what follows we assume that EZ̃D̃ is bounded away from zero. First, we consider the 
following infeasible IV estimator: 

α̂1 = (En ˇD)−1En ˇY. 

Z̃D̃)−1EnZ̃ ˜α̃1 = (En Y. 

This estimator uses quantities with tildes, which are not available in the sample. Notice 
that 

Z̃ ˜ ˜ ZU = α1 + (En ˜D)−1Enα̃1 = (En D)−1EnZ̃Dα˜ 1 + (EnZD̃)−1En ˜ Z ˜ ZU. ˜

Under general conditions the law of large numbers and central limit theorem give 
a

D − E ˜D →P ˜EnZ̃ ˜ Z ˜ 0, EnZU ∼ N(0, Ω/n), 

˜where Ω = Var( 
√ 
nEnZU). Application of the continuous mapping theorem yields that 

a√ 
n(α̃1 − α1) ∼ (EZ̃D̃)−1N(0, Ω). 

Second, we can show that under general conditions, the following property holds: 
√ 
n(α̂1 − α̃1) →P 0. (2.2) 

In words, the sample-based partialling-out is asymptotically as good as the population-
based partialling out. Thus the feasible and infeasible IV estimators are first-order equiv­
alent, which is a very useful observation. 

We thus established the following result. 
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Theorem 2. Under regularity conditions, the IV estimator obeys 
a√ 

n(α̂1 − α1) ∼ (EZ̃D̃)−1N(0, Ω) = N(0, Vα1 ) 
D)−1 ˜Vα1 = (E Z̃D̃)−1Ω(EZ̃ ˜ , Ω = Var( 

√ 
nEnZU). 

Using this result we can build conventional confidence intervals for α1. 

The interested reader may supply a set of regularity conditions and derive (2.2). Here we 
will skip these details, since the asymptotic theory of the IV estimator will be established 
rigorously as a part of GMM (generalized method of moments) analysis. 

2.3. Estimation and Inference under Weak Identification. When β1 ≈ 0, the delta method 
may provide a poor approximation to the finite-sample distribution of the IV estimator and 
the estimator itself starts to behave poorly, because we are dividing by a random quantity 
that fluctuates dangerously close to zero [7]. 

Formally, we may call the cases where the correlation between D̃ and Z̃ is close to zero 
as weakly-identified cases or cases with weak instruments. We shall use the terms weak 
identification and weak instruments interchangeably in what follows. 

Econometricians designed various proposals and rules of thumb for detecting cases 
with weak instruments. 

One rule of thumb states the following: if the F statistic for testing the hypothesis 
that the regression coefficients in the projection of the endogenous variable on the 
instruments is smaller than 20, then we deem the instruments as weak; if the F statistic 
for testing the hypothesis is greater than 20, then there is not a problem and we deem 
the instruments as strong. 

This rule is quite practical but it is not ideal. Perhaps the best way to detect the weak 
instrument problem is to design a computational experiment that mimics the empirical 
situation the researcher is facing (for example, fit a parametric model to the reduced form 
(2.1) for the data at hand and conduct experiments using the fitted model). The experiment 
would examine the finite-sample behavior of the estimator α̂1 and the coverage properties 
of the conventional confidence intervals. 
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Recall that F statistic is just the Wald statistic divided by the number of restrictions being 
tested. In our case, we test a single restriction so the F statistic is:   2

β̂1
F = , 

se(β̂1)

where se(β̂1) is the standard error of the estimator β̂1. Thus if F < 20 we should deem the 
instruments Z̃ as weak. As a preview for the empirical examples to be given later, we note 
that in the AK problem, F ≈ 50, and in the Acemoglu et. al problem, introduced later, 
F ≈ 11. 

When instruments are weak the IV estimator α̂1 exhibits non-standard behavior which 
is difficult to work with. So we take a completely different approach, which can be traced 
back to the ideas of Anderson and Rubin who worked in the 40s [2]: 

Instead of estimating the structural parameter α1 directly, we shall test potential val­
ues of this parameter using a test statistic that is well-behaved regardless of whether the 
identification is strong or weak. 

Toward this goal, we observe that we have the model 
˜ ˜ U ⊥ ˜Y − α1D = U, Z. 

This means that the projection coefficient of Ỹ − α1D̃ on Z̃ should be 0. That is we have 
the regression equation, 

˜ ˜ ˜ U ⊥ ˜Y − α1D = 0 · Z + U, Z. 
Thus, in the population, we can conclude that a value a is not equal to α1 if the projection 

˜coefficient of Ỹ − aD on Z̃ is not 0. 

This becomes the basis of our test. We set up a parameter space A1 for α1 and then test 
all values a in A1 by testing using the Wald statistics whether the projection coefficient of 
Ỹ − aD̃ on Z̃ is zero or not. The collection of all a’s that have passed the test becomes our 
confidence region for α1. 

Some formal details of this procedure are as follows: for each a ∈ A1 we obtain the 
regression decomposition: 

ˇ ˇ ˆ ˇ ˇY − aD = δaZ + Ua, Z ⊥S Ua, 
where Ž ⊥S Ua means orthogonality in the sample, i.e. En ˇ =ZUa 0. Thus, by definition, 
δ̂a is the sample projection coefficient of Y̌ − aĎ on Ž. Under general conditions we have 
that 

a
δ̂a − δa ∼ N(0, Vδa /n), 

and we let se(δ̂a) = V̂δa /n be the standard error, where V̂δa denotes a consistent estimator 
of Vδa . 
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We then formulate the Wald statistic for testing the null hypothesis δa = 0:

W (a) =

(
δ̂a

2

ˆse(δa)

)
.

Under the null hypothesis we can conclude thatW (a) ∼ χ2(1) under regularity conditions.
Given confidence level 1− p, our confidence region for α1 is

CR1 p(α1) = {a− ∈ A1 : W (a) ≤ c1−p},
where c 2

1 p is the (1− p)-quantile of the χ (1) distribution. Note that the practical imple-−
mentation of this procedure requires replacingA1 by a finite grid of potential values of α1,
with mesh size determined by an economically meaningful tolerance.

We make the following conclusion.

Theorem 3 (Weak-Id Robust Inference). Under general regularity conditions
a

W (α1) ∼ χ2(1),

so that the robust confidence region covers α1 with probability approaching 1− p:
P(α1 ∈ CR1 p(α ))− 1 = P(W (α1) ≤ c1−p)→ P(χ2(1) ≤ c1−p) = 1− p.

3. Method of Moments

The method of moments is another line of attack on the problem, which conveniently
moves us closer to the introduction of the generalized method of moments. Observe that
equation (1.1) written as

Ỹ − ˜ ˜α1D = U, U ⊥ Z,
is equivalent to the following moment condition:

˜ ˜ ˜E(Y − α1D)Z = 0.

Provided that ˜ ˜EDZ 6= 0, this equation has a unique solution:
˜ ˜α1 = (EDZ)−1 ˜ ˜EY Z.

This is the IV formula, which is exactly the same as in Theorem 1.

We can formulate a method of moments estimator α̂1 from the empirical analog of the
moment condition above:

E ˇ
n(Y − ˇ ˇα̂1D)Z = 0.

Solving this equation gives the explicit form of the estimator:
α̂1 = (E ˇ ˇDZ)−1n E ˇ ˇ

nYZ.
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This is the IV estimator that we have derived before. Hence the previous characterization 
of the asymptotic distribution applies here as well. 

This approach also admits a weak-id robust approach to inference. We can check if a 
value a = α1 by checking whether 

M(a) = E( Ỹ − aD̃)Z̃ = 0. 

So we formulate 

M̂(a) = En( ˇ Ď) ˇY − a Z. 

Assume i.i.d. sampling in what follows for simplicity. Under mild regularity conditions, 
these partialled-out moments have the adaptivity property: 

√ 
n(M̂(a) − M̃(a)) →P 0, (3.1) 

where 

M̃(a) = En( ˜ D) ˜Y − ˜ Z. 

Under i.i.d. sampling 
a

M̃(a) − M(a) ∼ N(0, Va/n), 

where Va = Var[( Ỹ − aD̃)Z̃], which together with the adaptivity property implies 

a
M̂(a) − M(a) ∼ N(0, Va/n). 

Suppose we have an estimator V̂a such that V̂a/Va →P 1, for instance, we can take V̂a = 
En[(Y̌ − aĎ)2Ž2] − (En(Y̌ − aĎ)Ž)2 . Then the Wald statistic takes the form: 

(M̂(a))2 a
W (a) = , and W (α1) ∼ χ2(1). 

V̂a/n 

These statistics are asymptotically equivalent to the statistics we have considered in the 
previous subsection. Hence for c1−p = (1 − p)-quantile of χ2(1), 

CR1−p(α1) = {a ∈ A1 : W (a) ≤ c1−p} 

covers α1 with probability approaching 1 − p: 

P(α1 ∈ CR1−p(α1)) = P(W (α1) ≤ c1−p) → P(χ2(1) ≤ c1−p) = 1 − p. 

This confidence interval is asymptotically equivalent to the confidence interval in the pre­
vious subsection. 

6=
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4. An IV Analysis of Returns to Schooling 

We illustrate the estimation and inference in SEMs using the returns-to-schooling appli­
cation of [3]. The sample comprises 329, 509 observations including males born in 1930– 
1939 from the 1980 U.S. Census. The model includes the log of weekly earning as Y ; the 
number of years of education as D; an indicator for being born in the fourth quarter of the 
year as the instrument Z; and a constant, 9 year of birth indicators, 8 region indicators, 
and indicators for married, black and SMSA as the controls W . According to the rule of 
thumb the instrument is strong because the first stage F -statistic is 49.65. 

Table 1. Returns to Schooling in AK data 

Estimate Std. Error 95% CI 
LS 6.32 0.04 (6.25, 6.40) 
IV 7.94 2.80 (2.47, 13.42) 
Robust 8.08 2.89 (2.41, 13.74) 
All the entries are multiplied by 100. Robust uses a mesh 
of 201 equidistant points over A1 = [1.28, 14.61]. 
Robust ”Estimate” and ”Std Error” are the center and 
the rescaled width of the robust CI. 

Table 1 reports least squares and instrumental variables estimates of the returns-to­
schooling coefficient α1, together with 95% confidence intervals. We construct conven­
tional confidence intervals based on Theorem 2 and robust confidence intervals based on 
Theorem 3. In the Robust row, the estimate is the center of the CI, and the standard error 
is the length of the CI divided by 2 × 1.96, using that 1.96 is the (1 − α/2)-quantile of the 
standard normal distribution with α = .05.1 The Least squares produces an estimate of 
the return-to-schooling of 6.32%, which is significantly lower than the IV estimate of al­
most 8%. We refer to [5] for an explanation of the negative bias of least squares based on 
heterogeneity in the discount rate. The conventional and robust methods produce similar 
confidence intervals for the return-to-schooling in this application where the identification 
is strong. 

5. An IV Analysis of Impact of Institutions on Growth 

We illustrate the difference between conventional and robust-to-weak-identification con­
fidence intervals using the data of [1]. They examined the effect of institutions on economic 

1The logic behind these calculations is that the standard form of a two-sided (1 − α)-CI for a parameter θ 
is θ̂ ± c(1 − α)SE(θ̂), where θ̂ is an estimate of θ; c(1 − α) is a critical value, typically the (1 − α/2)-quantile 
of the standard normal distribution, and SE(θ̂) is the standard error of θ̂. 
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performance using mortality rates among European colonists as an instrument for current 
institutions. The sample consists of 64 countries. We use the same model specification 
as in column 2 of Table 2 in [4] that includes the the log of PPP adjusted GDP per capita 
in 1995 as Y ; the average protection against expropriation risk from 1985 to 1995, which 
provides a measure of institutions and well-enforced property rights, as D; the log of the 
European settler mortality rates as the instrument Z; and a constant and a normalized 
measure of distance from the equator (latitude) as W . According to the rule of thumb 
the instrument is weak because the first stage F -statistic is 10.61. This indicates that the 
conventional intervals might not be reliable in this application where the identification is 
weak. 

Table 2. Effect of Institutions on Growth in AJR data 

Estimate Std. Error 95% CI 
LS 0.487 0.064 (0.362, 0.613) 
IV 0.969 0.216 (0.547, 1.392) 
Robust 1.323 0.334 (0.668, 1.978) 
Robust uses a mesh of 251 equidistant points over 
A1 = [0.107, 2.262]. 
Robust ”Estimate” and ”Std Error” are the center and 
the rescaled width of the robust CI. 

Table 2 reports least squares and instrumental variables estimates of the effect of institu­
tions α1, together with 95% confidence intervals. The standard errors use the small sample 
adjustment HC3 of [6]. We construct conventional confidence intervals based on Theorem 
2 and robust confidence intervals based on Theorem 3. In the Robust row, the estimate is 
the center of the CI and the standard error is computed as the length of the CI divided by 
2 × 1.96. While more than 50% narrower, the conventional confidence interval covers val­
ues that are below the lower end point of the robust confidence interval. Therefore these 
results improve upon the original empirical investigation of the problem that relied upon 
strong instrument assumption. We conclude that there is strong evidence that institutions 
do matter for GDP and that the lower bound on the effect is substantial. 

Notes 

Appendix A. Problems 

(1) Explain why in the IVM, the structural parameter can not be consistently estimated 
by the direct least squares method. Explain how the IVM can be estimated via the 
indirect least squares or the method of moments. 
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(2) Provide a Monte-Carlo example that illustrates the break-down of normal approx­
imation to the finite-sample distribution of the IV estimator α̂1 when β1 gets close 
to zero. 

(3) Supply a set of primitive regularity conditions for Theorem 2, e.g. assuming i.i.d. 
sampling. Derive the adaptivity property (2.2). 

(4) Derive the adaptivity property (3). Supply a set of primitive regularity conditions 
for section 3 and formalize the assertions there in the form of a theorem. 

(5) Obtain point estimates, conventional confidence bands, and weak-id robust confi­
dence bands for the AJR problem. Provide a thorough explanation for what you 
are doing. 

(6) Obtain point estimates, conventional confidence bands and weak-id robust confi­
dence bands for the AK problem. Note that the data set is quite big, so computation 
takes some time. Provide a thorough explanation for what you are doing. 
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